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Abstract

Leading AI firms claim to prioritize social welfare. How should firms with a social mandate price

and deploy AI? We derive pricing formulas that depart from profit maximization by incorporating

incentives to improve welfare and reduce labor disruptions. Using US data, we evaluate several

scenarios. A welfarist firm that values both profit and welfare should price closer to marginal cost,

as efficiency gains outweigh distributional concerns. A conservative firm focused on labor-market

stability should price above the profit-maximizing level in the short run, especially when its

AI may displace low-income workers. Overall, socially minded firms face a trade-off between

expanding access to AI and the resulting loss in profits and labor market risks.

‗The views expressed in this paper are our own and do not necessarily reflect those of the IMF, its Executive Board,
or its Management. Restrepo is part of the Anthropic Economic Advisory Council.



Artificial Intelligence (AI) promises to transform the economy, raising new questions about how

firms should price, deploy, and manage this technology. Leading AI firms present themselves as

socially responsible entities. They claim a dual mandate: to generate profits for shareholders while

enhancing social welfare and mitigating risks. OpenAI adopted a capped-profit model. Investors

earn returns up to a fixed multiple, after which the organization prioritizes its mission to “benefit all

of humanity” by “building safe and beneficial AGI and helping create broadly distributed benefits.”1

Anthropic declares to “make decisions that maximize positive outcomes for humanity in the long

run”.2 Both companies claim to have been conservative in deploying more advanced models and

capabilities, aiming to manage societal risks—such as economic displacement—while giving the

labor market time to adjust.

How should firms with a social mandate price and deploy AI? Is a commitment to maximizing

shareholder returns the best way to promote welfare? Should they expand access by pricing below

profit-maximizing levels? Or should they deploy AI slowly to mitigate labor market risks?

This paper addresses these questions by providing optimal-price formulas for socially minded

AI firms. The formulas extend Lerner’s Rule, which says that profit-maximizing firms should set

𝑃 − 𝑀𝐶

𝑃
=

1
𝜀
,

with 𝜀 the demand elasticity. Optimal pricing is given by a Modified Lerner Rule

𝑃 − 𝑀𝐶

𝑃
=

ℳ
𝜀
,

where ℳ summarizes the motives of a socially minded firm. We derive the formulas in a general

equilibrium environment where a tech firm has a monopoly over an AI capable of replicating

human skills. The deployment of this AI reduces production costs but disrupts labor markets for

workers with skills that are substitutable. The AI firm prioritizes profits, broader social welfare,

and minimizing labor market disruptions.

The optimal deployment strategy balances four distinct considerations:

• Profit motives push towards ℳ = 1, as in the traditional Lerner Rule.
1See https://openai.com/index/openai-elon-musk/.
2https://www.anthropic.com/company
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• Aggregate efficiency considerations push towards ℳ = 0, or marginal-cost pricing. This

achieves the level of AI production and access that maximizes the size of the pie.

• These aggregate benefits are weighed against distributional considerations, which capture

who benefits the most from AI. These can be positive or negative, depending on whether AI

substitutes for high- or low-income workers.

• Finally, the incentive to minimize labor market disruptions pushes for higher values of ℳ
that can exceed one in the short run but not in the long run. This motive calls for a gradual

deployment path, with the firm acting conservatively. This is because the cost of disrupting

the labor market is higher in the short run, while workers adjust.

The formulas highlight a tension between expanding access to AI (to maximize aggregate efficiency)

and the resulting short-term loss in profits and labor market risks.

We then present an exploration of the formulas, using US data. We compute the optimal

deployment path and prices of an AI capable of replacing human labor in each of 525 detailed jobs.

For each job, we imagine our tech firm develops an AI capable of replacing labor at 50% of the cost

and ask how a socially minded firm should price and deploy such AI.

We report optimal plans for firms that value welfare and minimizing disruptions to varying

degrees. A welfarist firm that values profits and welfare should price closer to marginal cost. This is

because for all jobs considered, efficiency gains outweigh distributional concerns by a wide margin,

since losses do not concentrate among low-income workers. On the other hand, a conservative

firm focused solely on balancing profits with labor-market stability should price above the profit-

maximizing level in the short run. A firm that values welfare and stability equally should price

close to the profit-maximizing level in the short run and closer to marginal cost in the long run.

We conclude that the most pro-social course of action for AI firms with considerable market

power is to refrain from exploiting it. A socially minded AI firm should price closer to marginal

cost in an effort to broaden access, with the only possible exception being the very short run, when

stability concerns are most significant. This conclusion contradicts recommendations to tax AI

and automation technologies to mitigate their adverse effects on the labor market. What these

recommendations miss is that AI firms can have considerable market power. If we worry that an AI

can have sizable impacts on prices and wages and is controlled by a small number of firms, we must

2



accept the possibility that these firms wield considerable market power and would limit output to

bid up prices. This exercise of market power already protects workers from the substituting effects

of AI at the expense of consumers. Further increasing the price of AI through taxes or self-regulation

would have an adverse first-order impact on consumers, whose access to AI is already limited, with

only modest protective benefits for workers.

We conclude the paper with extensions that explore the robustness of this conclusion. For

example, we demonstrate that the incentive for socially minded AI firms to price closer to marginal

cost becomes stronger when a progressive tax system is in place, providing some redistribution and

insurance for workers, or when its AI does not substitute for workers but instead creates value by

introducing new products. Conversely, we demonstrate that distributional and stability concerns

become more significant when there is increased competition among AI suppliers.

Literature This paper contributes to the long-standing debate on the social responsibilities of

firms. Following Friedman (1970), the traditional view holds that a firm’s sole obligation is to

maximize shareholder value. Leading AI companies explicitly reject this view by adopting mission

statements that emphasize societal welfare, long-term human outcomes, and labor stability. This

paper explores how such objectives should alter their pricing strategies.

This paper also contributes to the growing literature on optimal policy responses to AI and

automation. A strand examines the optimal taxation of automation technologies, motivated either

by distributional concerns (Guerreiro, Rebelo and Teles, 2021; Donald, 2022; Thuemmel, 2023;

Costinot and Werning, 2022; Lehr and Restrepo, 2024; Bond and Kremens, 2025) or efficiency

considerations (Acemoglu, Manera and Restrepo, 2020; Beraja and Zorzi, 2022). Our work relates

to this literature in that socially responsible AI firms partially internalize distributional concerns

by curbing the scale of AI deployment—much like how a tax on automation can reduce its use

and mitigate inequality. However, a key distinction is that, in the models studied in the literature,

it is always optimal to tax technologies that worsen inequality (assuming the set of fiscal tools is

limited). This result relies on the assumption of an efficient baseline economy, where the cost of

a small tax is second-order, while the distributional gains are first-order. In contrast, our setting

begins with an inefficient allocation due to market power, resulting in insufficient AI production.

In this context, expanding the use of AI yields first-order efficiency gains, which must be balanced

against concerns regarding distributional and labor market stability.
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A third related literature study the optimal deployment of AI accounting for existential risks

(Jones, 2024, 2025) and social risks that can be learned over time or via testing (Acemoglu and

Lensman, 2024; Guerreiro, Rebelo and Teles, 2023). Our work abstracts from these risks and focuses

exclusively on the question of how firms should deploy well-aligned or narrow AIs that carry no

existential risks.

Finally, our paper contributes to a growing empirical literature exploring how AI could disrupt

labor markets by measuring the capabilities of AI (Webb, 2020; Brynjolfsson, Mitchell and Rock,

2018; Felten, Raj and Seamans, 2021, 2023; Eloundou et al., 2023; Handa et al., 2025) and studying the

deployment of AI and Large Language Models in specific contexts (Peng et al., 2023; Brynjolfsson,

Li and Raymond, 2023; Noy and Zhang, 2023). These papers show that AI can substitute for human

labor in various domains at a fraction of the cost and with minimal input from expert human

workers. We use some of the estimates from these papers in our numerical exploration.

1 Model of labor-replacing AI

This section outlines a general model of how AI affects wages, prices, and households’ welfare.

We focus on AI technology capable of replicating human skills or inputs in some areas of the

economy. Examples include the use of AI systems to automate tasks such as radiology, copywriting,

journalism, customer service, and driving. These are all domains where AI systems can be trained

to replicate human input. We also assume that the technology is sufficiently advanced to operate

autonomously and without requiring input from workers. In our discussion section, we extend

our theory to account for the possibility that AI is used for novel applications beyond replicating

human input.

1.1 The Economy

The economy flows in continuous time 𝑡. There is a discrete set of commodities 𝑗 ∈ 𝒥 and skills or

labor inputs 𝑠 ∈ 𝒮. Commodity 𝑗 = 0 serves as the numeraire.

The economy is populated by a mass 𝜖 of financiers and a mass 1 of regular households (identified

with the superscript ℎ). Financiers own firms and no labor endowments. They consume the
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numeraire good and make consumption and saving decisions to maximize

𝑢 ≡
∫ ∞

0
𝑒−𝜌𝑡 𝑐0𝑡 𝑑𝑡 st: ¤𝑎𝑡 = 𝑟𝑡𝑎𝑡 + 𝜋𝑡 − 𝑐0𝑡 .

Regular household ℎ is endowed with a vector of skills or labor inputs 𝑛ℎ
𝑡 = (𝑛ℎ

𝑠𝑡)𝑠∈𝒮 that can

change over time. They consume commodity bundles 𝑐ℎ𝑡 = (𝑐ℎ
𝑗𝑡
)𝑗∈𝒥 and maximize

𝑢ℎ ≡
∫ ∞

0
𝑒−𝜌𝑡 𝑢(𝑐ℎ𝑡 ) 𝑑𝑡 st: ¤𝑎ℎ𝑡 = 𝑟𝑡𝑎

ℎ
𝑡 + 𝑤𝑡 · 𝑛ℎ

𝑡 − 𝑝𝑡 · 𝑐ℎ𝑡 and 𝑎ℎ𝑡 ∈ ℛ.

Here 𝑝𝑡 = (𝑝 𝑗𝑡)𝑗∈𝒥 is the price of commodities at time 𝑡 (with 𝑝0𝑡 = 1) and 𝑤𝑡 = (𝑤𝑠𝑡)𝑠∈𝒢 are wages,

with household wages given by 𝑤ℎ
𝑡 = 𝑤𝑡 · 𝑛ℎ

𝑡 . The term 𝑎ℎ𝑡 ∈ ℛ captures potential constraints,

assumed independent of prices.

AI can replicate labor input in a subset 𝒜 of 𝒮. The quantity of 𝑠 input is

ℓ𝑠𝑡 =


∫
ℎ

𝑛ℎ
𝑠𝑡 𝑑ℎ + 𝑞𝑠𝑡 for 𝑠 ∈ 𝒜∫

ℎ

𝑛ℎ
𝑠𝑡 𝑑ℎ otherwise.

Here, 𝑞𝑠𝑡 represents units of AI-generated output, assumed to be indistinguishable from that of

workers.

To produce AI-generated output, the AI firm uses 1/𝜓𝑠𝑡 units of computing resources, where

𝜓𝑠𝑡 denotes the efficiency of algorithms reproducing input 𝑠. Computing resources, denoted as 𝑥𝑡 ,

are produced at a one-to-one rate from the numeraire commodity. Feasibility requires∑
𝑠∈𝒜

𝜓𝑠𝑡 𝑞𝑠𝑡 ≤ 𝑥𝑡 ,

so that the consumption of computational resources by AI does not exceed supply.

Commodities 𝑦 are produced using labor (or AI) ℓ . Plans 𝑦 = (𝑦 𝑗𝑡)𝑗∈𝒥 ,𝑡 and ℓ = (ℓ𝑠𝑡)𝑠∈𝒮 ,𝑡 with

𝐹(𝑦, ℓ ) ≤ 0
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can be produced. 𝐹 has constant returns to scale and is operated competitively. Feasibility requires

𝑐𝜔 +
∫
ℎ

𝑐ℎ0𝑡 𝑑ℎ + 𝑥𝑡 ≤𝑦0𝑡 and∫
ℎ

𝑐ℎ𝑗𝑡 𝑑ℎ ≤𝑦 𝑗𝑡 otherwise

so that consumption of commodities does not exceed production.

Equilibrium: we are interested in an equilibrium where the AI company sets a feasible choice of

𝑞𝑠𝑡 and 𝑥𝑡 anticipating the effects of its actions on prices, profits, and the economy.

Given the choices of 𝑞𝑠𝑡 and 𝑥𝑡 , the equilibrium is defined in a standard way. It is given by a set

of prices {𝑟𝑡 , 𝑝𝑡 , 𝑤𝑡}, consumption plans {𝑐ℎ𝑡 , 𝑐0𝑡}, asset positions {𝑎ℎ𝑡 , 𝑎𝑡}, and production plans 𝑦, ℓ

such that consumers maximize utility subject to their flow-budget constraint and asset restrictions,

competitive firms maximize profits from operating 𝐹 taking prices as given, commodity markets

clear, and the asset market clears. Equilibrium profits for the AI-producing firm at time 𝑡 are

𝜋𝑡 =

∑
𝑠∈𝒜

(𝑤𝑠𝑡 − 𝜓𝑠𝑡) 𝑞𝑠𝑡

To derive our formulas, we do not need to solve for the equilibrium explicitly. It suffices that

financiers set the interest rate 𝑟𝑡 = ℎ𝑜 and determine the discount factor used by firms.

The objective of socially-oriented AI firms: The AI firm operates under three objectives: profit

maximization, social welfare, and minimizing labor market disruptions. Its objective function is

𝑉 = PDV 𝜋𝑡 +
∫
ℎ

𝜇ℎ 𝑢ℎ 𝑑ℎ + 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

PDV
𝑤ℎ

𝑡

𝑤̄ℎ
𝑑ℎ.

The first term captures profit maximization motives.

The second term captures welfare considerations in a reduced-form way. Here 𝜇ℎ is the value the

firm attaches to increasing the income of household ℎ. The 𝜇ℎ’s differ across households, reflecting

distributional considerations. As in standard welfare functions, the firm attaches greater weight to

poor households than richer ones. Investor welfare is already accounted for in profits, so we do not
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include it again to avoid double-counting.

The third term captures the objective of minimizing labor-market disruptions created by AI, with

a weight of𝜆. The AI firm penalizes labor-market losses incurred by exposed households, computed

as the percent decline in labor income of household ℎ relative to its initial status quo of 𝑤̄ℎ . These

penalties represent various considerations. Firms may adopt the principle that reducing people’s

wages below their status quo level is undesirable, either because people are particularly averse to

wage losses or because the firm adopts a conservative stance when judging its labor-market impact

that regards these deviations as unfair (as in Corden, 1974). Penalties may also capture strategic

considerations, with the firm minimizing disruptions to reduce discontent. In our formulation, the

firm penalizes all wage losses, without accounting for indirect benefits via reduced product prices.

AI firms may attach greater weight to wage losses because people are more sensitive or responsive to

their labor-market outcomes, either because these are more salient (benefits from reduced product

prices are “out of sight; out of mind”) or because they derive status from their high wages.3 To

summarize, AI firms want to avoid major shifts in the way labor markets operate, with the status

and wages of different jobs falling in ways that may be perceived as unfair or arbitrary by workers.

To simplify the exposition, we derive formulas assuming a quasi-linear aggregator of the form

𝑢(𝑐ℎ𝑡 ) = 𝑐ℎ0𝑡 +
∑
𝑗

𝑢𝑗(𝑐ℎ𝑗𝑡).

We also assume the equilibrium is such that all households ℎ consume 𝑐ℎ0𝑡 > 0 at all times.

To understand firm incentives, consider how a deviation in plans {𝛿𝑞𝑠𝑡} affects its objective:

𝛿𝑉 =

∫ 𝑡

0
𝑒−𝜌𝑡

{
(1 − 𝜇)

∑
𝑠∈𝒜

(
𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

)
(1)

+ 𝜇
∑
𝑠∈𝒜

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡 + 𝜇

∫
ℎ

𝑔ℎ
∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ + 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

Here, 𝜇 =
∫
ℎ
𝜇ℎ 𝑑ℎ is the average welfare weight across households and 𝑔ℎ = 𝜇ℎ/𝜇 − 1 are the

normalized weights. By construction,
∫
ℎ
𝑔ℎ 𝑑ℎ = 0 and the sign of 𝑔ℎ represents distributional

motives.
3In our formulation, the AI firm penalizes a reduction in wages in percent terms, so that a reduction in wages of

$10,000 receives a higher penalty if experienced by low-income workers.
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The first term in the right of (1) represents profit motives. We assume 1 > 𝜇 so that the firm has

an incentive to maximize profits.

The second term represents efficiency motives. Because the firm cares about welfare, it has an

incentive to produce efficiently, increasing quantities until prices equal marginal cost, 𝑃 = 𝑀𝐶.

The third term represents distributional motives. These call for restricting the quantity of AI

produced if it competes against poor households. This motive is weighed against efficiency consid-

erations.

The last term represents conservative motives. These receive a weight 𝜆 and capture the value

of minimizing the labor-market disruptions generated by AI. These are different from standard

distributional motives in that the AI firm is concerned about disrupting the labor market of both

rich and poor households, all of whom experience some wage pressure due to the deployment of

AI. In writing this, we assumed all households are exposed to AI, in the sense that 𝑛ℎ
𝑠𝑡 > 0 for at

least some 𝑠 ∈ 𝒜.

The firm optimally balances these motives to ensure 𝛿𝑉 = 0. This implies:

Proposition 1. In interior equilibria of the quasi-linear case, the socially minded firm produces 𝑞𝑠𝑡 until

ℒ𝑠𝑡 =

∑
𝑠′

(
(1 − 𝜇) 𝑞𝑠′𝑡 𝑤𝑠′𝑡

𝑞𝑠𝑡 𝑤𝑠𝑡
+ 𝜇

∫
ℎ

𝑔ℎ
𝑛ℎ
𝑠′𝑡 𝑤𝑠′𝑡

𝑞𝑠𝑡 𝑤𝑠𝑡
𝑑ℎ + 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

𝑛ℎ
𝑠′𝑡 𝑤𝑠′𝑡

𝑞𝑠𝑡 𝑤𝑠𝑡
𝑑ℎ

) 1
𝜀𝑠′𝑠𝑡

(2)

where 𝜀𝑠𝑠′𝑡 ≡ − 𝜕 ln 𝑞𝑠𝑡
𝜕𝑙𝑛𝑤𝑠′𝑡

is the cross demand elasticity between 𝑠 and 𝑠′ and 𝑞𝑠′𝑡 = 0 for 𝑠′ ∉ 𝒜.

Proof. In an interior equilibrium where 𝑞𝑠𝑡 > 0, any deviation in 𝑞𝑠𝑡 must yield 𝛿𝑉 = 0. Setting

𝛿𝑉 = 0 in (1) and rearranging yields (2). □

To develop intuition, assume the cross-demand elasticity is 0 for 𝑠 ≠ 𝑠′. The own demand

elasticity (𝜀𝑠𝑡 for 𝑠 = 𝑠′) is strictly positive and always remains in the formula. Let’s also consider

first a profit-maximizing firm, by setting 𝜇 = 𝜆 = 0. The formula says that a profit-maximizing AI

firm should restrict quantities until its Lerner index ℒ ≡ (𝑃 − 𝑀𝐶)/𝑃 satisfies Lerner’s Rule

ℒ𝑠𝑡 =
1
𝜀𝑠𝑡

, (3)

where 𝜀𝑠𝑡 ≥ 0 is the (negative) of the demand elasticity of 𝑠 at time 𝑡.
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For a socially minded firm, optimal pricing satisfies a Modified Lerner Rule

ℒ𝑠𝑡 =
ℳ
𝜀𝑠𝑡

,

where

ℳ ≡ 1 − 𝜇 + 𝜇

∫
ℎ

𝑔ℎ
𝑛ℎ
𝑠𝑡

𝑞𝑠𝑡
𝑑ℎ + 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

𝑛ℎ
𝑠𝑡

𝑞𝑠𝑡
𝑑ℎ.

The adjustment term differs from 1 and summarizes the different firm considerations:

• The “1” is the usual profit maximization term.

• The “−𝜇” pushes towards lower markups and higher quantities. This term reflects the firm’s

desire to increase access to AI, thereby raising aggregate efficiency at the expense of investors.

• The term “𝜇
∫
ℎ

𝑔ℎ 𝑛ℎ
𝑠𝑡

𝑞𝑠𝑡
𝑑ℎ” has ambiguous sign. It is positive when AI competes more

intensely against poor households. In this case, AI deepens existing inequalities, causing a

socially minded firm to restrict its use by charging higher prices. The term can be negative

if AI competes more intensely against rich households. In this case, the use of AI reduces

underlying inequalities, causing socially minded firms to lower prices and increase quantities.

• The term “𝜆
∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

𝑛ℎ
𝑠𝑡

𝑞𝑠𝑡
𝑑ℎ” is always positive and reduces quantities of AI produced.

This captures the AI firm’s incentive to minimize labor market disruptions. This incentive to

curb the use of AI is stronger when it competes against poor segments of the labor market,

since a reduction in wages of a given amount is more costly in proportional terms for low-wage

households.

The formula serves to illustrate several scenarios. For a utilitarian AI firm that cares about profits

and aggregate efficiency but has no distributional or conservative inclinations (𝜇 > 0, 𝑔ℎ = 0,𝜆 = 0),

optimal prices satisfy

ℒ𝑠𝑡 = (1 − 𝜇) 1
𝜀𝑠𝑡

.

These prices are below the profit-maximizing level and closer to marginal-cost pricing. For a

welfarist AI firm that cares about profits, welfare, and distributional issues, but has no distributional
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or conservative inclinations (𝜇 > 0, 𝑔ℎ ≠ 0,𝜆 = 0), optimal prices satisfy

ℒ𝑠𝑡 =

(
1 − 𝜇 + 𝜇

∫
ℎ

𝑔ℎ
𝑛ℎ
𝑠𝑡

𝑞𝑠𝑡
𝑑ℎ

) 1
𝜀𝑠𝑡

.

For a conservative AI firm that cares about minimizing labor market disruptions but not about

welfare per se (𝜇 = 0,𝜆 > 0), optimal prices satisfy

ℒ𝑠𝑡 =

(
1 + 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

𝑛ℎ
𝑠𝑡

𝑞𝑠𝑡
𝑑ℎ

) 1
𝜀𝑠𝑡

,

which exceed the profit-maximizing level.

In the general case with cross effects (𝜀𝑠𝑠′𝑡 ≠ 0 for 𝑠 ≠ 𝑠′), the formula accounts for equilibrium

price effects on all workers and revenue from other AI products. For example, when 𝜇 = 𝜆 = 0, we

recover the standard multi-product Lerner formula, which takes into account how increasing the

quantity supplied of one good affects demand for other AI products sold by the firm.

1.2 A Tractable Example of Equilibrium with Socially-Minded Firms

In general, the equilibrium of the model is given by (i) a choice of quantities and prices by the AI

firm that satisfy the Modified Lerner’s rule, (ii) a vector of commodity prices, and (iii) production

and consumption plans that maximize households’ utility and firms’ profits (for firms producing

commodities 𝑦). The characterization of the equilibrium is generally complicated, as the residual

demand for AI depends on how skills are combined into goods, the demand for these goods by

households, and the supply of skills.

In this sub-section, we characterize the full equilibrium of the model in an example economy

with the following features:

(a) Each commodity is produced linearly using a commodity-specific skill, with the skill associ-

ated with the numeraire commodity not in 𝒜.

(b) The utility function is 𝑢𝑠(𝑐𝑠) = 𝛾1/𝜎𝑠
𝑠

𝑐
1−1/𝜎𝑠
𝑠

1−1/𝜎𝑠 , with 𝜎𝑠 > 1, so that the demand for each

commodity has a constant elasticity 𝜎𝑠 .
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(c) Households reallocate labor away from disrupted skills at a rate 𝛼 > 0. This implies

𝑛ℎ
𝑠𝑡 = 𝑛̄ℎ

𝑠 𝑒−𝛼 𝑡 and 𝑛𝑠𝑡 = 𝑛̄𝑠 𝑒
−𝛼 𝑡 for 𝑠 ∈ 𝒜.

Here, {𝑛̄ℎ
𝑠 } and 𝑛̄𝑠 denote pre-AI quantities of labor input in skill 𝑠.

(d) AI is productive enough to justify deployment and ensure an interior equilibrium. This implies

1 − 𝜇

∫
ℎ

𝑔ℎ 𝑛̄ℎ
𝑠

𝑛̄𝑠
𝑑ℎ − 𝜆

∫
ℎ

1
𝑤̄ℎ

𝑛̄ℎ
𝑠

𝑛̄𝑠
𝑑ℎ >

𝜓𝑠𝑡

𝑤̄𝑠
,

where 𝜓𝑠𝑡 is the marginal cost of the AI firm and 𝑤̄𝑠 = 𝛾𝑠 𝑛̄
−1/𝜎𝑠
𝑠 the pre-AI price of skill 𝑠.

In this economy, the quantity and price of AI for each skill are determined independently.

Proposition 2. In an economy where (a)–(d) hold, equilibrium prices and quantities of skills in 𝒜, are

uniquely determined by two equations. The supply curve, obtained by rearranging (2):

1 − 𝜓𝑠𝑡

𝑤𝑠𝑡
=

(
1 − 𝜇 + 𝜇

∫
ℎ

𝑔ℎ 𝑛̄ℎ
𝑠

𝑞𝑠𝑡
𝑒−𝛼 𝑡 𝑑ℎ + 𝜆

∫
ℎ

1
𝑤̄ℎ

𝑛̄ℎ
𝑠

𝑞𝑠𝑡
𝑒−𝛼 𝑡 𝑑ℎ

) 𝑞𝑠𝑡

𝑞𝑠𝑡 + 𝑛̄𝑠 𝑒−𝛼 𝑡

1
𝜎𝑠

(4)

and the demand curve, obtained from consumer demand:

𝑤𝑠𝑡 =𝛾𝑠 (𝑞𝑠𝑡 + 𝑛̄𝑠 𝑒
−𝛼 𝑡)−1/𝜎𝑠 (5)

Proof. Equation (4) follows from the formula in Proposition 1, using the fact that in this economy,

the elasticity of demand for AI (accounting for worker production) exceeds 𝜎𝑠 and is given by

𝜀𝑠𝑡 =
𝑞𝑠𝑡 + 𝑛̄𝑠𝑒

−𝛼𝑡

𝑞𝑠𝑡
𝜎𝑠 .

The demand curve in (5) is derived by equating the marginal rate of substitution for commodity 𝑠

(relative to the numeraire) to its price 𝑤𝑠 .

Note that in this economy, there are no complementarities across jobs. As a result, 𝑤ℎ
𝑡 < 𝑤̄ℎ for

all households with 𝑛ℎ
𝑠𝑡 > 0 for some 𝑠 ∈ 𝒜. This is why the cost of disruption sums over all ℎ. □

The proposition provides formulas for computing the full deployment path of an AI that substi-

tutes for skill 𝑠. The supply and demand curve pin down quantities, prices, and markups charged in
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equilibrium by socially minded AI firms. Figure 1 depicts the supply and demand curves, assuming

the distributional motive is positive. Condition (d) ensures the curves intersect at a unique 𝑞𝑠𝑡 > 0.

Figure 1: Equilibrium Supply and Demand for AI

Notes: The figure shows the demand and supply curves for an AI that substitutes for skill 𝑠. The supply curve
and equilibrium points are shown for a profit-maximizing firm, a utilitarian firm, a welfarist firm (assuming the
distributional motive is positive), and a conservative firm.

The supply curve for a profit-maximizing firm is upward sloping: as the quantity of AI produced

increases, the residual demand curve becomes more inelastic, leading to higher markups. The

utilitarian firm supply curve is shifted to the right, reflecting incentives to charge lower markups to

increase access and aggregate efficiency. The supply curves of welfarist and conservative firms are

shifted upward, reflecting incentives to restrict quantities and mitigate the harmful distributional

or labor-market impacts of AI.

The figure also shows that the distributional motives of a welfare-maximizing firm or the stability

motives of a conservative firm vanish as quantities increase. This is why the supply curve of a

welfarist firm converges to the utilitarian one and the supply curve of a conservative firm converges
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to the profit-maximizing one. This force can be so strong as to render the supply curve of these

firms downward sloping—a distinct possibility shown in the Figure. From equation (4), this is the

case if

𝜇

∫
ℎ

𝑔ℎ 𝑛̄ℎ
𝑠

𝑛̄𝑠
𝑑ℎ + 𝜆

∫
ℎ

1
𝑤̄ℎ

𝑛̄ℎ
𝑠

𝑛̄𝑠
𝑑ℎ > 1 − 𝜇,

so that distributional and labor-market stability concerns are dominant.

To understand why distributional and labor-market stability concerns vanish, return to equation

(1), describing the effects of changes in quantities produced on the objective of the AI firm. The

firm balances three objectives: profits, aggregate efficiency, and distributional and stability con-

siderations. The equation indicates that profit and efficiency motives are directly proportional to

the quantity of AI used. Increasing the quantity of AI by 1% leads to a larger profit and efficiency

increase when the AI is widely used. However, distributional and stability concerns do not scale

with quantities. Increasing quantities produced by 1% reduces wages of exposed groups by at most

(1/𝜎𝑠) × 1%—an effect that remains bounded as the use of AI deepens. For this reason, socially

minded firms prioritize efficiency and profit motives as the use of AI becomes widespread.4

The formulas in the proposition also highlight two new economic mechanisms introduced by

labor reallocation. First, the formulas show that distributional and labor-market stability motives

vanish over time as workers reallocate. This force calls for a gradual and backloaded deployment

plan, where AI firms first curb quantities and set higher prices to shield exposed workers from

disruptions and give them time to adjust. Over time, firms lower prices and expand quantities, as

workers slowly reallocate away from exposed skills or sectors of the labor market.

Second, the reallocation of labor away from exposed skills eases competition, making the residual

demand faced by the AI firm more inelastic over time. This allows firms to set higher markups in

the long run, leading to a more front-loaded deployment plan.

The net effect of these forces over time on markups and pricing is ambiguous. For a pure

profit-maximizing firm, the second effect is the only one present, and we would expect markups to

increase over time as the AI firm becomes the sole supplier of skills in 𝒜. For a conservative firm,

the second effect might dominate, leading to markups that decrease in time.
4The same logic is explored in Costinot and Werning (2022). Their paper derives formulas for optimal taxes that

balance aggregate efficiency with distributional considerations. As here, the cost of distorting trade or the use of
automation technology scales with quantities, which calls for smaller taxes on trade and technology as globalization
deepens and the use of automation technology becomes widespread.
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2 Scenarios for AI Transitions with Socially-Minded Firms

We now turn to a numerical exploration of our formulas. We focus on the example economy in

Proposition 2 and ask the hypothetical question:

Imagine a firm develops an AI capable of replicating skill 𝑠 at a fixed fraction of its current cost.

How should socially minded firms deploy and price this technology?

The formulas in the proposition demonstrate how to calculate the optimal deployment path for

any such AI. By focusing on these hypothetical AIs, we avoid the more challenging question of

determining which specific skills are most likely to be automated in the near term.

For our application, we focus on a firm that operates in the US economy and map skills to 525

detailed occupations from the 2017–2021 American Community Survey. For each occupation, we

compute the optimal deployment plan of an AI capable of replacing labor inputs in said occupation.

For the model parameters, we set a reallocation rate 𝛼 = 4% per year, in line with estimates from

our previous work (Lehr and Restrepo, 2024). We also set 𝜎𝑠 = 3, which is a commonly used value

for the elasticity of substitution between differentiated goods, as the ones produced by different

skills in our model (see, for example, Broda and Weinstein, 2006).5

The data inputs needed for our calculations and appearing in the formulas from Proposition 2

are computed as follows:

• We let ℎ denote the set of people at different percentiles of the US income distribution, assumed

to have the same relative weight 𝑔ℎ .6

• We take 𝑤̄𝑠 as the average hourly wage across occupations from 2017–2021 ACS. For each

percentile, we then measure 𝑦̄ℎ
𝑠 as their income from occupation 𝑠 and define

𝑛̄ℎ
𝑠 =

𝑦̄ℎ
𝑠

𝑤̄𝑠
,

as the effective hours worked by households from the ℎth percentile in occupation 𝑠.
5A related object is the elasticity of substitution between college and non-college labor, with estimates ranging from

1.4 (as in Katz and Murphy, 1992) to 4 (as in Bils, Kaymak and Wu, 2024). For broad occupations, Burstein, Morales and
Vogel (2019) estimate an elasticity of substitution of 2.1. We use a larger value since our occupational groups are finer.

6In defining these percentiles, we sort individuals based on household income per person. This is computed as total
household income divided by the number of adults plus a half times the number of children. This approach accounts
for intra-household income sharing, assigning children a weight of 0.5 times that of an adult.

14



• We let 𝑤̄ℎ denote the average labor income of people in percentile ℎ.

• We compute total labor input in 𝑠 as 𝑛̄𝑠 =
∑

ℎ 𝑛̄
ℎ
𝑠 and calibrate 𝛾𝑠 to match 𝑤̄𝑠 = 𝛾𝑠 𝑛̄

−1/𝜎𝑠
𝑠 .

Finally, we assume 𝜓𝑠 = .5 𝑤̄𝑠 , so that AI can replicate human labor at 50% the cost.7 The

rationale for this choice is as follows. In our model, an AI substituting for skill 𝑠 and sold at a

standard markup 𝜎𝑠 / (𝜎𝑠 − 1) above marginal cost raises output per worker from 1 to

1 + 𝑞𝑠𝑡

𝑛̄𝑠
=

(𝜓𝑠𝑡

𝑤̄𝑠

𝜎𝑠
𝜎𝑠 − 1

)−𝜎𝑠
= 2.4.

This 2.4-fold increase in output per worker matches the upper end of available empirical estimates.

For example, Noy and Zhang (2023) estimate a twofold increase in (quality-adjusted) output per

worker in writing tasks and Brynjolfsson, Li and Raymond (2023) estimate a 1.15 increase in customer

service.

In the analysis, we contrast the optimal deployment plans of various firms. We consider:

• a pure profit maximizer (𝜇 = 𝑔ℎ = 𝜆 = 0);

• a utilitarian firm (𝜇 > 0, 𝑔ℎ = 𝜆 = 0);

• a welfarist firm (𝜇 > 0, 𝑔ℎ ≠ 0,𝜆 = 0);

• a conservative firm (𝜇 = 𝑔ℎ = 0,𝜆 > 0);

• a multi-objective firm (𝜇 > 0, 𝑔ℎ ≠ 0,𝜆 > 0).

In the relevant scenarios, we set 𝜇 = 0.5 and use the welfare weights 𝑔ℎ reported in Lockwood

and Weinzierl (2016), inferred from the progressivity of the US tax system. This assumes that the

welfare weights of the AI firm align with those that the US political system places on households at

different percentiles of the income distribution. Our value for 𝜇 implies the firm is willing to trade

1 dollar of profit for 2 dollars of value for the economy as a whole. The values for welfare weight

𝑔ℎ are shown in Figure 2. The values imply that the firm is willing to give $ 1 of profits to increase

incomes by $1.90 at the bottom of the income distribution and $ 3 at the top.
7Variable costs include the computational resources needed to run the AI and effectively replicate human input in

skills 𝑠, plus any residual costs associated with integration, prompting, or inspection of the AI output. Replicating
human input can require multiple calls to these models, explaining why 𝜓𝑠𝑡 can vary across jobs. The variable
computational and energy costs of using AI are significant and have increased as AI companies train larger and more
complex models with higher inference costs.

15



Figure 2: Welfare Weights Across the Income Distribution

Notes: The figure reports welfare weights 𝑔ℎ by income percentile. These are obtained as the welfare weights that
rationalize the progressiveness of the US tax system, and are based on Figure 1 in Lockwood and Weinzierl (2016).
We directly use the reported weights at specific income percentiles and interpolate between them to span the income
distribution.

Finally, in the relevant scenarios, we rescaled 𝜆 by the average wage in the economy to ensure

that all terms have an equal scale and set 𝜆 = 0.5. This implies that the firm is willing to reduce

profits by $ 1 if it raises wages for the average displaced worker by $ 2. These scenarios are meant

to clarify how AI firms may act if they pursue a broader set of social objectives; of course, we do not

know what is in the minds or hearts of their CEOs or how they will weigh different considerations

in practice.

2.1 Equilibrium markups and AI deployment plans

Figure 3 reports equilibrium markups (𝑤𝑠𝑡 − 𝜓𝑠𝑡)/𝜓𝑠𝑡 for firms with different objectives at three

time horizons. Panel A shows markups on impact (𝑡 = 0), Panel B for the short run (𝑡 = 5 years),

and Panel C for the long run (𝑡 = 100 years). The figures sort the 525 detailed occupations by their

average base wage 𝑤̄𝑠 in the horizontal axis. The movement along the curves shows how markups

vary across occupations hypothetically replaced by AI as we move from low-pay to high-pay roles.

As a benchmark, consider a pure profit-maximizing firm, in black. Markups for this firm at

𝑡 = 0 are around 32% and constant, since we assume a common productivity improvement across

all skills. As expected from our discussion of 2, markups rise at longer time horizons, reflecting

reduced competition from workers as they reallocate to other jobs. In the long run, the AI firm
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Figure 3: Equilibrium Markups in the Short and Long Run

Notes: Panel A reports equilibrium markups on impact (𝑡 = 0) for AIs capable of automating different occupations
(ranked by wage in the horizontal axis). The curves are smoothed by binning occupations into 50 quantiles and
reporting the average within each bin. Each panel shows five curves, one for each type of firm. Panels B and C report
the same curves after 5 and 100 years.

becomes the sole supplier of skill 𝑠 and charges a markup of 𝜎𝑠/(𝜎𝑠 − 1) = 50% across the board.

The utilitarian firm, in orange, charges lower markups than the profit-maximizing firm, about

15% at 𝑡 = 0 and converging to 20% in the long run. This is because the utilitarian firm has an

incentive to lower prices below the profit-maximizing level to expand access and increase aggregate

efficiency.

The welfarist firm, in dashed green, prioritizes both aggregate efficiency and distributional

concerns. The latter have a tiny impact on equilibrium markups at the bottom. Relative to the

utilitarian firm, distributional concerns call for a 0.1 percentage point higher markup at the bottom,

thereby redistributing resources towards low-income households in low-paying jobs. Distributional

considerations have a modest impact on markups at the top, lowering them (relative to the utilitarian

firm) by a full percentage point (from 15% to 14%). These results suggest that distributional

considerations play a small role. From the viewpoint of a welfarist firm, the concern of maximizing
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access dominates and leads to markups that are less than half of what a profit-maximizing firm

would charge.

The conservative firm, in solid purple, balances profits against labor-market stability. This firm

ends up charging prices above the profit-maximizing level to minimize its labor market impact. This

concern is particularly pronounced for AIs that automate low-wage occupations, as these generate

more substantial labor-market disruptions. For this reason, equilibrium markups are higher at the

bottom, for AIs that automate low-paying occupations. In the long run, stability concerns vanish

and the firm stops behaving conservatively to focus entirely on profit maximization.

Finally, the dashed blue line presents markups for a multi-objective firm, which balances profit,

efficiency, redistribution, and stability concerns. This firm charges a 33% markup on AIs competing

against low-paying workers and a 15% markup on AIs that substitute labor in high-paying occupa-

tions. In the long run, distributional and stability considerations fade as workers reallocate, and the

AI firm converges to a common 20% markup that balances broader access with its profit motive.

Figure 4: Decomposition of Motives Driving Markups Charged by Multi-Objective Firm

Notes: The figure decomposes equilibrium markups charged by a multi-objective firm on impact (𝑡 = 0) for AIs capable
of automating different occupations (in the horizontal axis). The solid blue line depicts the equilibrium markup. The
black dotted line represents the contribution of profit-maximizing motives. The orange dotted line adds the contribution
of aggregate efficiency considerations. The green line takes into account distributional considerations. The gap between
this and the solid blue reflects labor-market stability considerations. The curves are smoothed by binning occupations
into 50 quantiles and reporting the average within each bin. Each panel shows five curves, one for each type of firm.
Panels B and C report the same curves after 5 and 100 years.
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Figure 4 decomposes the role of each motive for the multi-objective firm. The dashed black line

represents the contribution of profit motives, which push for high markups, especially for high-

paying jobs facing less competition from workers. The orange line incorporates aggregate efficiency

considerations, which call for uniformly lower markups to balance profit against increased access.

The green line accounts for distributional considerations, which have no impact at the bottom, and

calls for lower markups at the top. Finally, the blue line takes into account wage stability concerns,

which call for curbing quantities and raising prices for AIs, especially those that replace low-wage

jobs.

Figure 5 complements the results by reporting equilibrium quantities. We plot the increase in

quantities relative to their baseline levels before AI implementation. AI-produced quantities range

from one to four times the baseline level. The utilitarian firm generates the maximum increase in

AI usage, while the conservative and profit-maximizing firms restrict quantities the most.

Figure 5: Equilibrium Quantities in the Short and Long Run

Notes: Panel A reports equilibrium quantities on impact (𝑡 = 0) for AIs capable of automating different occupations
(in the horizontal axis) as the percent deviation from pre-AI production levels. The curves are smoothed by binning
occupations into 50 quantiles and reporting the average within each bin. Each panel shows five curves, one for each
type of firm. Panels B and C report the same curves after 5 and 100 years.
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2.2 Why do distributional considerations play such a small role?

Why do distributional considerations play such a small role, especially for low-pay jobs? Two forces

explain this finding.

First, and as discussed in Proposition 2, the strength of distributional motives vanishes as AI use

deepens. As shown in Figure 5, AI output for the utilitarian and welfarist firms is already 4 times

that supplied by workers at baseline. This pushes the firm to prioritize aggregate efficiency over

distributional considerations.

Second, the distributional effects of changing wages in a given occupation are not as large as one

may have thought, especially at the bottom. To illustrate this point, let’s compute the distributional

gains of increasing income in occupation 𝑠, given by the normalized Pareto weights of the average

employee:

Average Pareto Weight𝑠 =

∑
ℎ

𝑔ℎ
𝑛̄ℎ
𝑠

𝑛̄𝑠
.

Panel A in Figure 6 reports these average weights for the 525 detailed occupations in our data. Panel

B complements this information by plotting the average income percentile of people employed in

each occupation.

Figure 6: Welfare Weights Across Occupations

Notes: Panel A plots the distributional gains of increasing income by $1 across occupations. These are computed as∑
ℎ 𝑔ℎ

𝑛̄ℎ
𝑠

𝑛̄𝑠
, where the normalized Pareto weights 𝑔ℎ are from Lockwood and Weinzierl (2016). Panel B plots the average

income percentile of workers within an occupation.
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All occupations at the bottom half of the pay distribution have positive average weights, showing

that increasing income in these jobs has a positive distributional benefit. However, the average

weights are small and close to zero, suggesting these benefits are small in practice. Increasing

income in jobs at the bottom carries a tiny distributional gain of 1 cent for every dollar. To understand

why, consider Cashiers—one of the 5% lowest paying jobs in the US. Despite its low pay, people

working as cashiers come from households with a wide range of incomes, spanning from the very

bottom to the 70th percentile. On average, people employed as cashiers come from households at

the 42nd percentile of the income distribution. This lack of segmentation at the bottom implies that

protecting cashiers and other low-wage jobs benefits a wide range of households, not just the very

poor. This effect is further compounded by the fact that many of the poorest households earn no

labor income at all, and are therefore not exposed to the substituting effects from AI.

On the other hand, increasing income in jobs at the top carries a more sizable distributional

penalty of 12 cents for every dollar, reflecting the higher degree of income segmentation at the

top. Consider Economists, one of the 5% highest paid jobs. People in this field typically hail from

households at the upper end of the income distribution, with the average economist located at

the 90th percentile. This asymmetry explains why distributional concerns matter very little at the

bottom but have a more appreciable (though still modest) effect for AI pricing at the top.

Figure 7: Markups and Quantities on Impact for Stronger Redistributive Preferences

Notes: This figure reports optimal markups and quantities on impact (𝑡 = 0) for stronger redistributive preferences than
baseline, 𝑔̃ℎ = 10 × 𝑔ℎ . Panel A reports optimal markups and Panel B the associated quantities for the automated skill.

Would distributional considerations for jobs at the bottom matter if the AI firm were even more
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progressive? Imagine a firm whose welfare weights 𝑔ℎ are ten times those estimated by Lockwood

and Weinzierl (2016) in Figure 2. This hypothetical firm is in effect ten times more progressive than

the US political system. The resulting equilibrium markups are shown in Figure 7. The stronger

distributional considerations call for one percentage point higher markups on AIs that substitute

for bottom occupations, relative to what a utilitarian firm would do. However, the incentive to

increase aggregate efficiency remains dominant, and it is still optimal for a welfarist firm to expand

the quantity of AI produced to broaden access, despite its potential adverse distributional effects at

the lower end.

Stronger distributional considerations do make a difference for jobs at the top. A welfarist firm

with ten times stronger distributional concerns should charge markups that are half of what a

utilitarian firm would charge and produce 20% more output. This is because AIs that substitute

for jobs at the top redistribute from workers at the very top (who tend to hold highly paid jobs)

towards the rest of the population (who are not exposed to these top jobs)—an extremely valuable

proposition from the firm’s viewpoint.

In summary, stronger distributional concerns lead to a more aggressive deployment of AI at the

top, but have no significant implications for AIs that substitute for jobs at the bottom.

2.3 Should more productive AI be priced differently?

Our baseline results considered the optimal deployment of AIs capable of replacing workers at 50%

of their cost. Suppose that 𝜓𝑠 = .2 𝑤̄𝑠 , so that AI can replace workers at 20% of their cost. How

should these more productive AIs be priced and deployed?

Figure 8 reports equilibrium prices and quantities for such AIs across occupations at 𝑡 = 0.

Relative to our baseline, markups are slightly higher, while quantities are an order of magnitude

larger. This is because a more productive AI firm experiences less competition from workers and

captures a greater share of the market, allowing it to charge higher markups.

More importantly, the figure shows that both distributional and labor-market stability motives

are weaker when pricing more productive AIs. This can be seen from the fact that outcomes for

conservative firms are close to those of a pure profit maximizer, and outcomes for the welfarist and

multi-objective firms are close to the utilitarian one. As discussed in Proposition 2, this is because

profit and efficiency motives scale with the quantity of AI used, while distributional and stability
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Figure 8: Markups and Quantities on Impact for Highly Productive AI

Notes: This figure reports optimal markups and quantities on impact (𝑡 = 0) for more productivity AI than baseline,
𝜓𝑠 = 0.2. Panel A reports optimal markups and Panel B the associated quantities for the automated skill.

motives do not.

We conclude that as firms develop more productive and less costly AIs, distributional or stability

considerations become less pressing. A socially minded firm with a sufficiently productive AI

should behave essentially as a utilitarian one, balancing access and profits only.

2.4 What would a planner do?

To conclude our empirical exploration, we contrast the optimal deployment plan pursued by a

socially minded firm with that of a social planner that can control the supply of AIs but has no other

tools. Suppose the objective of the planner is to maximize social welfare and maintain labor market

stability, giving a weight 𝜇 to the utility of financiers—the same given to the average household.

The same derivations we did for an AI firm above imply that the planner supplies AI until

1 − 𝜓𝑠𝑡

𝑤𝑠𝑡
=

( ∫
ℎ

𝑔ℎ 𝑛̄ℎ
𝑠

𝑞𝑠𝑡
𝑒−𝛼 𝑡 𝑑ℎ + 𝜆

𝜇

∫
ℎ

1
𝑤̄ℎ

𝑛̄ℎ
𝑠

𝑞𝑠𝑡
𝑒−𝛼 𝑡 𝑑ℎ

) 𝑞𝑠𝑡

𝑞𝑠𝑡 + 𝑛̄𝑠 𝑒−𝛼 𝑡

1
𝜎𝑠

(6)

This equation states that the planner trades off the reduction in aggregate efficiency from reducing

output below its competitive level (the left side) with the distributional and stability gains this

creates (the right side).
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Figure 9 depicts the optimal deployment plan that a social planner controlling the supply of AI

would choose. To ease the comparison with our previous findings, we report the implied markup

that would decentralize the planner’s allocation. These can also be interpreted as the optimal tax

that such a planner would levy on AIs substituting for jobs at the bottom and top of the income

distribution, respectively. The figure also reports the markups that a socially minded multi-objective

firm would charge (using the baseline values for 𝜇 and 𝜆 from above).

Figure 9: Implied Markups or AI Taxes that Decentralizing the Planner’s Allocation

Notes: The figure reports the optimal markup that a social planner would set to balance aggregate efficiency with
distributional and stability concerns. Panel A reports markups on impact (𝑡 = 0). Panels B and C report the same curves
after 5 and 100 years. For comparison, the figure also depicts the deployment path followed by a multi-objective firm
with 𝜇 = 𝜆 = 0.5.

A conservative social planner that cares about welfare and stability equally (𝜇 = 𝜆 as our multi-

objective firm), would set an optimal markup on AIs at the bottom of 7% and at the top of less

than 1% on impact. Over time, as distributional and stability concerns subside, the conservative

social planner would impose no markups or taxes on AI and would implement a competitive

outcome, whereas a responsible-AI firm would continue to charge a positive markup, as it balances

broadening access with its private profit incentives.
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The main result here is that the planner allocation features lower AI prices than what a

responsible-AI firm with the same social objectives would charge. Despite its social inclinations,

socially responsible firms remain constrained by their private profit motives in how much they can

lower prices to broaden access.

2.5 Do our conclusions apply to occupations with high AI replacement risk?

Our results characterize the optimal deployment path for AIs capable of substituting for labor across

various occupations, from cashiers to economists, without taking a stance on which jobs could be

automated first. Do our conclusions apply to occupations with the highest risk of automation by

AI, as identified in existing prospective analyses?

Figure 10: Distributional and Stability Considerations for Occupations at Risk of Replacement

Notes: Panel A plots the redistributive motive, 𝜇
∑

ℎ 𝑔ℎ
𝑛̄ℎ
𝑠

𝑛̄𝑠
, against the share of tasks automatable by AI following

Eloundou et al. (2023). Panel B plots the non-disruption motive, 𝜆
∑

ℎ
1
𝑤̄ℎ

𝑛̄ℎ
𝑠

𝑛̄𝑠
against the same AI measure.

We answer this question using data from Eloundou et al. (2023) on the share of core tasks by

occupation that could be automated with LLM-powered systems. Figure 10 shows that occupations

at risk (in the horizontal axis) do not stand out in their distributional or stability considerations.

Panel A shows that highly exposed occupations have average Pareto weights near zero. Panel B

shows that the average cost of disruptions among employees does not systematically vary with AI

exposure either. This is because prospective studies, such as Eloundou et al. (2023), suggest that the
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set of occupations at risk is spread throughout the income distribution and does not concentrate at

either the bottom or the top.

In sum, the conclusions drawn above for the entire universe of jobs apply equally well to the

subset of occupations more at risk of being substituted by AIs.

3 Theory Extensions

This section explores theoretical extensions. First, we discuss how taxes and the safety net affect the

deployment of AI by socially minded firms. Second, we discuss the possibility that some AIs may

not replicate human skill but could eventually acquire new capabilities that allow these systems

to produce entirely new goods and services without devaluing existing human skills. Finally, we

discuss the case when multiple AI firms are competing a la Cournot. The proofs for this extension

are in the appendix.

3.1 Taxes and the safety net

We now extend the model to account for the tax system and the safety net. Assume the after-tax

labor income of household ℎ is

After-tax labor incomeℎ𝑡 ≡ 𝒯 (𝑤ℎ
𝑡 ) + 𝑇𝑡 ,

where 𝑇𝑡 is a common transfer that balances the government budget and 𝒯 (.) is an increasing tax

function, with 𝒯 (0) = 0 and 1−𝒯 ′(𝑤ℎ
𝑡 ) > 0 giving the marginal tax rate experienced by households

at different points of the income distribution.

The AI firm’s objective function is now

𝑉 = PDV 𝜋𝑡 +
∫
ℎ

𝜇ℎ 𝑢ℎ 𝑑ℎ + 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

PDV
𝒯 (𝑤ℎ

𝑡 )
𝒯 (𝑤̄ℎ) 𝑑ℎ,

where we assume that the stability term depends on how actions by the AI firm reduce after-tax

labor income 𝒯 (𝑤ℎ
𝑡 ) relative to its status quo level 𝒯 (𝑤̄ℎ).
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Proposition 3. In the quasi-linear case with government taxes, a socially-responsible firm produces 𝑞𝑠𝑡 until

ℒ𝑠𝑡 =

(
1 − 𝜇 + 𝜇

∫
ℎ

𝑔ℎ 𝒯 ′(𝑤ℎ
𝑡 )

𝑛ℎ
𝑠𝑡

𝑞𝑠𝑡
𝑑ℎ + 𝜆

∫
ℎ

𝒯 ′(𝑤ℎ
𝑡 )

𝒯 (𝑤̄ℎ)
𝑛ℎ
𝑠𝑡

𝑞𝑠𝑡
𝑑ℎ

) 1
𝜀𝑠𝑡

(7)

The proposition shows that a more progressive tax system (as evidenced by a lower keep rate

𝒯 ′(𝑤ℎ
𝑡 )) weakens the firm’s distributional and stability concerns. In the extreme case of full redis-

tribution (i.e., 𝒯 ′(𝑤ℎ
𝑡 ) = 0), distributional and stability considerations vanish. This highlights an

important interplay between public policy and self-regulation. The more we redistribute via the tax

system, the less an AI firm should worry about its downstream distributional effects and the more

it should prioritize broadening access.

3.2 AI as creating new goods and services

Our formulas assume that AIs substitute for human labor in existing jobs, a natural application since

these systems are trained on human-generated data to mimic us. Yet some argue that large models,

when trained on vast datasets, can develop novel capabilities and produce goods and services that

surpass anything humans have created so far.

To account for this possibility, assume the firm also develops AIs that create new goods and

services, such as new proteins that it can sell or license to medical laboratories. Assume also that

household utility is given by

𝑢ℎ(𝑐) = 𝑐ℎ0𝑡 +
∑
𝑠∈𝒮

𝛾1/𝜎𝑠
𝑠

𝑐
1−1/𝜎𝑠
𝑠

1 − 1/𝜎𝑠
+
∑
𝑠′∈𝒩

𝛾1/𝜎𝑠′
𝑠′

𝑐
1−1/𝜎𝑠′
𝑠′

1 − 1/𝜎𝑠′
,

for 𝜎𝑠′ > 1. The set 𝒩 represents new goods and services produced by AIs, indexed by 𝑠′. We let

𝑛ℎ
𝑠′ = 0 for all 𝑠′ ∈ 𝒩 , indicating that humans were not able to produce these novel goods and

services.

Proposition 4. In an economy where (a)–(d) hold, the optimal pricing of novel AIs 𝑠′ ∈ 𝒩 satisfies a modified

Lerner rule

ℒ𝑠′𝑡 =

(
1 − 𝜇

) 1
𝜎𝑠′

. (8)
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AIs that expand the range of goods and services benefit all workers without disrupting existing

labor markets, and thus raise no concerns regarding distribution or stability. For this class of AIs,

the main responsibility of a socially minded firm is to price close to marginal cost and broaden

access.

3.3 Competition among AI producers

We extend the baseline model in Section 1.2 to incorporate competition among AI companies. For

each 𝑠 ∈ 𝒜, suppose 𝑀𝑠 > 1 identical firms produce the AI and compete in quantities à la Cournot.

Proposition 5. In an economy where (a)–(d) hold and 𝑀𝑠 symmetric companies compete in quantities, the

equilibrium price of AI satisfies

ℒ𝑠𝑡 =

(1 − 𝜇

𝑀𝑠
+ 𝜇

∫
ℎ

𝑔ℎ 𝑛̄ℎ
𝑠

𝑞𝑠𝑡
𝑒−𝛼 𝑡 𝑑ℎ + 𝜆

∫
ℎ

1
𝑤̄ℎ

𝑛̄ℎ
𝑠

𝑞𝑠𝑡
𝑒−𝛼 𝑡 𝑑ℎ

) 𝑞𝑠𝑡

𝑞𝑠𝑡 + 𝑛̄𝑠 𝑒−𝛼 𝑡

1
𝜎𝑠

, (9)

where 𝑞𝑠𝑡 is the aggregate quantity of AI used in 𝑠 ∈ 𝒜.

As usual, competition forces firms to set prices closer to their marginal cost and expand quanti-

ties. This is evidenced by the fact that, in (9), the term "1 − 𝜇" is divided by 𝑀𝑠𝑡 .

The proposition also shows that distributional and stability concerns become increasingly rele-

vant as competition between AI suppliers intensifies. To see this, note that a pure-profit-maximizing

firm would price according to

ℒ𝑠𝑡 =
1

𝑀𝑠𝑡

𝑞𝑠𝑡

𝑞𝑠𝑡 + 𝑛̄𝑠 𝑒−𝛼 𝑡

1
𝜎𝑠

The more competition this firm faces, the closer it would price to marginal cost. Consider now a

socially minded firm. As competition intensifies, distributional and stability considerations become

the sole forces causing the firm to deviate from profit-maximizing pricing. Broadening access is no

longer a first-order concern.

The reason why this happens is that competition pushes firms to produce closer to the efficient

level of AI (from an aggregate efficiency point of view). Starting from this level, the aggregate

efficiency gains from further expanding access are limited, since firms are already pricing close to

their marginal cost. Instead, the incentive to curb quantities to limit adverse distributional effects

or maintain stability remains active and becomes the dominant force guiding firms’ actions.
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4 Conclusion

How should socially minded firms deploy and price their AIs? This paper provides a framework

to address this question by extending Lerner’s Rule to incorporate a broader set of objectives: gen-

erating profits, promoting social welfare, and minimizing labor-market disruptions. The resulting

pricing formulas clarify how these objectives shape markups, deployment speed, and access to AI.

Applying our framework to US data across hundreds of occupations, we find that a firm that

cares about welfare and stability equally should price near the profit-maximizing level in the short

run, but closer to marginal cost over time. This gradual strategy limits short-run disruptions and

balances them with improved access to the technology in the medium run.

Our conclusion from this exercise is that the most pro-social course of action for a monopolist

AI firm is to refrain from exploiting its market power, except in the very short run, when stability

considerations are the most pressing. This conclusion is particularly relevant for AIs that produce

new goods and services without disrupting existing labor markets, and when the government is

already engaged in effective redistribution.

This conclusion also depends on the baseline level of competition in AI markets. Whether the

incentive to prioritize access dominates depends on how constrained supply was by the exercise of

market power to begin with. If AI firms face little competition, the incentive to broaden access by

lowering prices dominates the actions of a socially responsible firm. Instead, if competition among

AI firms already results in quantities that are close to efficient, the incentive to broaden access loses

relevance, while distributional and stability concerns become dominant.

Because our analysis focuses solely on labor market and economic efficiency considerations,

abstracting from broader societal and existential risks, our conclusions apply only to well-aligned

or narrow AIs without existential risks.
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Appendix

This appendix derives equation (1) and also the planner solution in (6). It then provides proofs for

the extensions.

Derivation of (1): First, note that 𝑟𝑡 = 𝜌, since financiers must be indifferent between consuming

or saving.

Following an arbitrary change in quantities by the AI firm, we get

𝛿𝑉 =

∫ 𝑡

0
𝑒−𝜌𝑡

{∑
𝑠∈𝒜

(
𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

)
+

∫
ℎ

𝜇ℎ
(∑

𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

In this expression:

• The first line indicates the changes in profits that flow to financiers.

• The second line gives the change in households’ utility. By assumption, 𝑐ℎ0𝑡 > 0, which implies

that the marginal value of income in period 𝑡 is 𝑒−𝜌𝑡 . This is then multiplied by 𝜇ℎ , capturing

the social value of increasing utility for household ℎ, and the change in household net income

resulting from the perturbation. Note that while households adjust their consumption and

savings decisions in response to price changes, these changes are second-order due to the

envelope theorem. This is why only the change in income resulting from price changes is

reflected. Note also that commodity 𝑗 = 0 is the numeraire, and so its price is fixed at one.

• The third line gives the effects via labor market disruptions, which are assumed to be a function

of wages. Note that this applies to all households, as AI necessarily reduces nominal wages

for all households with 𝑛ℎ
𝑠𝑡 > 0.
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We can rewrite the above expression as

𝛿𝑉 =

∫ 𝑡

0
𝑒−𝜌𝑡

{
(1 − 𝜇)

∑
𝑠∈𝒜

(
𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

)
+ 𝜇

∑
𝑠∈𝒜

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

+ 𝜇

(∑
𝑠∈𝒜

𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +
∫
ℎ

(∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

)
+ 𝜇

∫
ℎ

𝑔ℎ
(∑

𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

Using ℓ𝑠𝑡 =
∫
ℎ
𝑛ℎ
𝑠𝑡 𝑑ℎ + 𝑞𝑠𝑡 for 𝑠 ∈ 𝒜 and ℓ𝑠𝑡 =

∫
ℎ
𝑛ℎ
𝑠𝑡 𝑑ℎ for 𝑠 ∉ 𝒜), plus market clearing for

commodities 𝑗 ≠ 0, this simplifies to:

𝛿𝑉 =

∫ 𝑡

0
𝑒−𝜌𝑡

{
(1 − 𝜇)

∑
𝑠∈𝒜

(
𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

)
+ 𝜇

∑
𝑠∈𝒜

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

+ 𝜇

( ∑
𝑠

ℓ𝑠𝑡 𝛿𝑤𝑠𝑡 −
∑
𝑗≠0

𝑦 𝑗𝑡 𝛿𝑝 𝑗𝑡

)
+ 𝜇

∫
ℎ

𝑔ℎ
(∑

𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

Because the production of commodities is competitive and features constant returns to scale, firms

make zero profits, and the envelope theorem (applied to their profits) implies∑
𝑗≠0

𝑦 𝑗𝑡 𝛿𝑝 𝑗𝑡 −
∑
𝑠

ℓ𝑠𝑡 𝛿𝑤𝑠𝑡 = 0.

That is, the second line in the equation for 𝛿𝑉 is zero. To conclude, note that 𝑐ℎ
𝑗𝑡
= 𝑦 𝑗𝑡 for 𝑗 ≠ 0 in

the third line because of quasi-linearity. The term
∑

𝑗≠0 𝑐
ℎ
𝑗𝑡
𝛿𝑝 𝑗𝑡 is then common to all households

and cancels because
∫
ℎ
𝑔ℎ 𝑑ℎ = 0. This simplification yields (1).
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Derivation of (6): Let

𝑆 = 𝜇 𝑢 +
∫
ℎ

𝜇ℎ 𝑢ℎ 𝑑ℎ + 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

PDV
𝑤ℎ

𝑡

𝑤̄ℎ
𝑑ℎ

be the planners’ objective. Consider a small perturbation in the quantity of AI produced. This

affects the equilibrium value of 𝑆 as follows:

𝛿𝑆 =

∫ 𝑡

0
𝑒−𝜌𝑡

{
𝜇
∑
𝑠∈𝒜

(
𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

)
+

∫
ℎ

𝜇ℎ
(∑

𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

We can rewrite the above expression as

𝛿𝑆 =

∫ 𝑡

0
𝑒−𝜌𝑡

{
𝜇

(∑
𝑠∈𝒜

(
𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

)
+

∫
ℎ

(∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

)
+ 𝜇

∫
ℎ

𝑔ℎ
(∑

𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

Using ℓ𝑠𝑡 =
∫
ℎ
𝑛ℎ
𝑠𝑡 𝑑ℎ + 𝑞𝑠𝑡 for 𝑠 ∈ 𝒜 and ℓ𝑠𝑡 =

∫
ℎ
𝑛ℎ
𝑠𝑡 𝑑ℎ for 𝑠 ∉ 𝒜), plus market clearing for

commodities 𝑗 ≠ 0, the first line simplifies to:

𝛿𝑆 =

∫ 𝑡

0
𝑒−𝜌𝑡

{
𝜇

(∑
𝑠∈𝒜

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡 +

∑
𝑠

ℓ𝑠𝑡 𝛿𝑤𝑠𝑡 −
∑
𝑗≠0

𝑦 𝑗𝑡 𝛿𝑝 𝑗𝑡

)
+ 𝜇

∫
ℎ

𝑔ℎ
(∑

𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

Because the production of commodities is competitive and features constant returns to scale, firms
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make zero profits, and the envelope theorem (applied to their profits) implies∑
𝑗≠0

𝑦 𝑗𝑡 𝛿𝑝 𝑗𝑡 −
∑
𝑠

ℓ𝑠𝑡 𝛿𝑤𝑠𝑡 = 0.

Moreover, 𝑐ℎ
𝑗𝑡
= 𝑦 𝑗𝑡 for 𝑗 ≠ 0 because of quasi-linearity. The term

∑
𝑗≠0 𝑐

ℎ
𝑗𝑡
𝛿𝑝 𝑗𝑡 is then common to

all households and cancels because
∫
ℎ
𝑔ℎ 𝑑ℎ = 0. Making both replacements in the equation for 𝛿𝑆

yields the planner’s variant of (1):

𝛿𝑆 =

∫ 𝑡

0
𝑒−𝜌𝑡

{
𝜇

∑
𝑠∈𝒜

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡 + 𝜇

∫
ℎ

𝑔ℎ
(∑

𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

At an optimum, the planner sets quantities so that 𝛿𝑆 = 0. This implies that for all 𝑡 and 𝑠 ∈ 𝒜,

0 = 𝜇
(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡 + 𝜇

∫
ℎ

𝑔ℎ
∑
𝑠′

𝑛ℎ
𝑠′𝑡 𝛿𝑤𝑠′𝑡 𝑑ℎ + 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠′

𝑛ℎ
𝑠′𝑡 𝛿𝑤𝑠′𝑡 𝑑ℎ,

which in the simplified economy considered in Proposition 2 can be written as in equation (6).

Proof of Proposition 3: Following an arbitrary change in quantities by the AI firm, we get

𝛿𝑉 =

∫ 𝑡

0
𝑒−𝜌𝑡

{∑
𝑠∈𝒜

(
𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

)
+

∫
ℎ

𝜇ℎ
(
𝒯 ′(𝑤ℎ

𝑡 )
∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 + 𝛿𝑇𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

𝒯 ′(𝑤ℎ
𝑡 )

𝒯 (𝑤̄ℎ)
∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

Using the fact that

𝛿𝑇𝑡 =

∫
ℎ

(∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 − 𝒯 ′(𝑤ℎ

𝑡 )
∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡

)
𝑑ℎ,
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which follows from the requirement that tax revenue is rebated to households, the above expression

for 𝛿𝑉 can be rewritten as

𝛿𝑉 =

∫ 𝑡

0
𝑒−𝜌𝑡

{
(1 − 𝜇)

∑
𝑠∈𝒜

(
𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

)
+ 𝜇

∑
𝑠∈𝒜

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

+ 𝜇

(∑
𝑠∈𝒜

𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +
∫
ℎ

(∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

)
+ 𝜇

∫
ℎ

𝑔ℎ
(
𝒯 ′(𝑤ℎ

𝑡 )
∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

𝒯 ′(𝑤ℎ
𝑡 )

𝒯 (𝑤̄ℎ)
∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

From here on, we follow the same steps from the derivation of equation (1) to obtain the variant:

𝛿𝑉 =

∫ 𝑡

0
𝑒−𝜌𝑡

{
(1 − 𝜇)

∑
𝑠∈𝒜

(
𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

)
+ 𝜇

∑
𝑠∈𝒜

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

+ 𝜇

∫
ℎ

𝑔ℎ 𝒯 ′(𝑤ℎ
𝑡 )

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

𝒯 ′(𝑤ℎ
𝑡 )

𝒯 (𝑤̄ℎ)
∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

From here on, we proceed as in the proof of Proposition 2.

Proof of Proposition 4: Following an arbitrary change in quantities for AIs in 𝒩 or 𝒜, we get

𝛿𝑉 =

∫ 𝑡

0
𝑒−𝜌𝑡

{ ∑
𝑠∈𝒩∪𝒜

(
𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

)
+

∫
ℎ

𝜇ℎ
(∑

𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.
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Following the same steps as in the derivation of equation (1), we can write this as

𝛿𝑉 =

∫ 𝑡

0
𝑒−𝜌𝑡

{
(1 − 𝜇)

∑
𝑠∈𝒩∪𝒜

(
𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

)
+ 𝜇

∑
𝑠∈𝒩∪𝒜

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞𝑠𝑡

+ 𝜇

∫
ℎ

𝑔ℎ
∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

At an optimum, the firm sets quantities so that 𝛿𝑉 = 0. In an economy with (a)–(d), this implies

that for every 𝑠′ ∈ 𝒩 and time 𝑡,

0 = (1 − 𝜇)
(
𝑞𝑠′𝑡 𝛿𝑤𝑠′𝑡 +

(
𝑤𝑠′𝑡 − 𝜓𝑠′𝑡

)
𝛿𝑞𝑠′𝑡

)
+ 𝜇

(
𝑤𝑠′𝑡 − 𝜓𝑠′𝑡

)
𝛿𝑞𝑠′𝑡 ,

where we used the fact that 𝑛ℎ
𝑠′𝑡 = 0 and the fact that changing 𝑞𝑠′𝑡 does not affect wages for other

skills 𝑠 ≠ 𝑠′. This expression can then be rearranged into (8).

Proof of Proposition 5: Let 𝑞(𝑖)𝑠𝑡 be the quantity supplied by one of the AI firms in 𝑠 ∈ 𝒜, where

𝑖 = 1, 2, . . . , 𝑀𝑠 . Denote by 𝑞
(−𝑖)
𝑠𝑡 the quantity supplied by its competitors. A perturbation in 𝑞

(𝑖)
𝑠𝑡

changes the firm objective (𝑉 (𝑖)) by

𝛿𝑉 (𝑖) =

∫ 𝑡

0
𝑒−𝜌𝑡

{∑
𝑠∈𝒜

(
𝑞
(𝑖)
𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞(𝑖)𝑠𝑡

)
+ 𝜇

∑
𝑠∈𝒜

𝑞
(−𝑖)
𝑠𝑡 𝛿𝑤𝑠𝑡

+
∫
ℎ

𝜇ℎ
(∑

𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

This expression assumes the AI firm values the utility of owners of other AI firms at a rate 𝜇, which

is the same as the average household.
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Rearranging terms, this can be expressed as

𝛿𝑉 (𝑖) =

∫ 𝑡

0
𝑒−𝜌𝑡

{
(1 − 𝜇)

∑
𝑠∈𝒜

(
𝑞
(𝑖)
𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞(𝑖)𝑠𝑡

)
+ 𝜇

∑
𝑠∈𝒜

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞(𝑖)𝑠𝑡

+ 𝜇

(∑
𝑠∈𝒜

𝑞𝑠𝑡 𝛿𝑤𝑠𝑡 +
∫
ℎ

(∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

)
+ 𝜇

∫
ℎ

𝑔ℎ
(∑

𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 −

∑
𝑗≠0

𝑐ℎ𝑗𝑡 𝛿𝑝 𝑗𝑡
)
𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

Following the same steps as in the derivation of (1), we have that the second line is zero and the

effect of prices on the third line also averages to zero. This yields the variant of (1):

𝛿𝑉 (𝑖) =

∫ 𝑡

0
𝑒−𝜌𝑡

{
(1 − 𝜇)

∑
𝑠∈𝒜

(
𝑞
(𝑖)
𝑠𝑡 𝛿𝑤𝑠𝑡 +

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞(𝑖)𝑠𝑡

)
+ 𝜇

∑
𝑠∈𝒜

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
𝛿𝑞(𝑖)𝑠𝑡

+ 𝜇

∫
ℎ

𝑔ℎ
∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

+ 𝜆

∫
ℎ:𝑤ℎ

𝑡 <𝑤̄
ℎ

1
𝑤̄ℎ

∑
𝑠

𝑛ℎ
𝑠𝑡 𝛿𝑤𝑠𝑡 𝑑ℎ

}
𝑑𝑡.

At an optimum, the firm sets quantities so that 𝛿𝑉 (𝑖) = 0. In an economy with (a)–(d), this

implies that for every 𝑠 ∈ 𝒜 and time 𝑡,

0 = (1 − 𝜇)
(
𝑞
(𝑖)
𝑠𝑡

𝛿𝑤𝑠𝑡

𝛿𝑞(𝑖)𝑠𝑡
+
(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

) )
+ 𝜇

(
𝑤𝑠𝑡 − 𝜓𝑠𝑡

)
+ 𝜇

∫
ℎ

𝑔ℎ 𝑛ℎ
𝑠𝑡

𝛿𝑤𝑠𝑡

𝛿𝑞(𝑖)𝑠𝑡
𝑑ℎ + 𝜆

∫
ℎ

1
𝑤̄ℎ

𝑛ℎ
𝑠𝑡

𝛿𝑤𝑠𝑡

𝛿𝑞(𝑖)𝑠𝑡
𝑑ℎ.

This can be written as

1 − 𝜓𝑠𝑡

𝑤𝑠𝑡
=

(
1 − 𝜇 + 𝜇

∫
ℎ

𝑔ℎ
𝑛ℎ
𝑠𝑡

𝑞
(𝑖)
𝑠𝑡

𝑑ℎ + 𝜆

∫
ℎ

1
𝑤̄ℎ

𝑛ℎ
𝑠𝑡

𝑞
(𝑖)
𝑠𝑡

𝑑ℎ

)
1
𝜀(𝑖)𝑠𝑡

,

where 1
𝜀(𝑖)𝑠𝑡

= −𝜕 ln𝑤𝑠𝑡

𝜕 ln 𝑞
(𝑖)
𝑠𝑡

is the residual elasticity of demand faced by the firm. The iso-elastic

39



specification in Section 1.2 implies

1
𝜀(𝑖)𝑠𝑡

=
𝑞
(𝑖)
𝑠𝑡

𝑞𝑠𝑡 + 𝑛̄𝑠𝑒−𝛼𝑡
1
𝜎𝑠

.

Plugging this expression above and using the fact that 𝑞(𝑖)𝑠𝑡 = 𝑞𝑠𝑡/𝑀𝑠 (from symmetry), we get (9).
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