
Does Monopsony Matter for Innovation?∗

Nils H. Lehr†

International Monetary Fund

January 19, 2024

Abstract

This paper examines how firms’ monopsony power—their ability to depress wages
by restricting employment—in the market for inventors affects U.S. innovation and
economic growth. Using an instrumental variable strategy, I estimate firm-level in-
ventor labor supply elasticities and find that firms face less than perfectly elastic
supply, with larger employers wielding greater monopsony power. I develop and
quantify a heterogeneous firms growth model with size-dependent monopsony power
that matches this evidence. The model suggests that monopsony power reduces an-
nual U.S. economic growth by 0.20 percentage points and welfare by 11% through
depressed R&D employment and misallocation.
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1 Introduction

The growing dominance of large firms has fostered an active debate on its origins and impact
on the U.S. economy (Grullon et al., 2019; Autor et al., 2020). Politicians, commentators,
and academics alike have raised concerns that rising concentration may be closely linked to
a perceived decline in competition and rise in firms’ market power (Wu, 2018; Philippon,
2019; Meagher, 2020). Concerns about insufficient competition increasingly include labor
markets where large firms may have the power to suppress the wages of their employees. For
example, labor markets are explicitly mentioned in the White House’s 2021 executive order
on “Promoting Competition in the American Economy” and they are at the core of the
revised 2023 Horizontal Merger Guidelines, which were informed by the recent monopsony
literature (The White House, 2021; Berger et al., 2023).

Labor market power, commonly referred to as monopsony power, was considered most
prevalent for “low-skilled” workers in rural communities, e.g., for miners in towns with
only few coal mines in close proximity, however, recent evidence suggests that it extends to
“high-skilled” workers (Goolsbee and Syverson, 2023; Seegmiller, 2023). One interpretation
of these novel findings focuses on a perhaps previously less emphasized source of monopsony
power: human capital specificity. For example, registered nurses provide invaluable services
to hospitals, but their significant human capital—as indicated by the required graduate
degree—is only valuable within the profession. Resultingly, hospitals can suppress nurses’
compensation in face of limited competition for their services (Prager and Schmitt, 2021).

Building on these findings, I study the macroeconomic consequences of monopsony
power over inventors, a group of highly specialized workers with an outsized impact on
productivity and growth. Monopsony power may be both particularly widespread and
concerning for inventors, since their skills tend to be highly specialized and their output,
i.e., inventions, is considered one of the key drivers of long-run economic growth and wel-
fare. Furthermore, the compounding nature of innovation implies that monopsony among
innovators may have important dynamic implications that go beyond static inefficiencies.
Anecdotal evidence suggests that tech companies are aware of their potential market power
over these workers and colluded to suppress their wages in the past. For example, large
tech firms had agreements not to poach each others’ engineers in order to keep their wages
low (Edwards, 2014). Apple, Adobe, Intel, and Google were fined by the Department of
Justice in 2010 for these non-poaching agreements, while Microsoft only recently announced
it would not enforce non-compete agreements (The Department of Justice, 2010; Reuters,
2022).
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This paper estimates that monopsony power in the market for corporate inventors has a
sizable negative impact on innovation and economic growth. I find that firms with large in-
ventor workforce appear to have significant monopsony power, while smaller firms face more
competitive conditions. Interpreted through the lens of a quantitative endogenous growth
model, this evidence suggests that monopsony power might depress aggregate inventor
employment and lead to an inefficient allocation of inventors across firms. Misallocation
occurs through a size-dependent monopsony channel that reduces inventor employment
disproportionally in larger employers. Quantitatively, my results indicate that monopsony
power over inventors reduces long-run economic growth by 0.20 p.p. leading to welfare loss
of 11% compared to a world in which firms act as price takers.

I reach these conclusions in three steps. First, I introduce monopsony power over in-
ventors into a simple endogenous growth model with heterogeneous firms. Inventors choose
their employer based on idiosyncratic preference shocks and wages offered as in Card et
al. (2018). As a result, firms face an upwards sloping labor supply curve and can lower
wages marginally without losing their entire inventor workforce, as would be the case in
the standard competitive model. Similar to Berger et al. (2022), I allow for size-dependent
monopsony power such that large employers of corporate inventors may have more power
over them. Monopsony power depresses the aggregate demand for corporate inventors, re-
sulting in lower R&D employment and lower economic growth. Size-dependence of monop-
sony power further induces misallocation across firms as larger firms depress their demand
for corporate inventors more than smaller firms, which leads to an additional drag on
innovation and economic growth.

In the second step, I present novel evidence on firms’ monopsony power over corporate
inventors in the U.S. I estimate the average firm-level elasticity of inventor wages with
respect to their employment, i.e., their inverse labor supply elasticity, in a sample of U.S.-
listed firms by regressing inventor wage growth on employment growth. I construct inventor
employment and their wages by combining firms’ financial statements with their patent
records. The literature has long recognized the potential identification challenges in this
setup (Manning, 2011). Most importantly, labor supply shocks, such as preference shocks
over firms, can lead to a downwards bias in the estimated elasticity. In particular, a positive
labor supply shock reduces the wage a firm needs to pay in order to maintain a given level
of employment, which is informative about the wage level of a firm, but not its local labor
supply elasticity. I propose to address this identification challenge by using stock market
returns as an instrument for shocks to firms’ labor demand as in Seegmiller (2023). The
instrument is relevant if stock market returns partly reflect shocks that induce the firm to
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expand, such as demand shocks for its products. It satisfies the exclusion restriction if there
is no link between stock market returns and inventor wages other than their employment. I
confirm robustness using firm-level productivity shocks from Imrohoroglu and Tuzel (2014).

My estimates suggests that monopsony power is both sizable and size-dependent. I
estimate an average inverse labor supply elasticity of 0.44, which implies that a firm would
lose about 23% of its inventors if it were to reduce their wages by 10%. For comparison,
Seegmiller (2023) estimates an elasticity of 0.82 for high-skilled workers, while Yeh et al.
(2022) estimate an average elasticity of 0.68 for nonproduction workers and Berger et al.
(2022) estimate an elasticity of 0.33 for all workers in firms with a 10% market share in
their local labor market. Importantly, I find that firms with above median R&D workforce
face an inverse labor supply elasticity of 0.75 compared to approximately 0 for smaller
firms. Thus, firms with above median inventor employment would lose only about 13%
of their R&D workforce if they were to reduce their wages by 10%, while below median
R&D employment firm have no wage setting power and face a perfectly competitive labor
market. Similarly, the literature on production workers finds that larger employers face less
elastic labor supply and, thus, have more monopsony power. I confirm that my estimates
are not driven by a changing composition of corporate researcher quality nor pre-trends.

In the final step, I extend the model introduced in the first step and calibrate it by
moment matching using the evidence on the labor supply elasticity of inventors. The
calibrated model is then used as a laboratory to study the impact of monopsony in the
market for corporate inventors on innovation and economic growth. I introduce three
extensions that account for important structural features of the R&D sector. First, I
allow for non-listed firms in the R&D sector. These firms tend to be much smaller in
the data and, thus, may mitigate some of the monopsony power of larger firms. Second,
I account for stock-based compensation of inventors, which may constitute a violation of
the exclusion restriction in my estimation by providing a direct link between wages and
the stock market performance of a firm. Lastly, I allow for non-labor inputs into the R&D
production process, which limit the incentives of firms to downsize by providing a substitute
for inventors. I calibrate the extended model using a combination of external calibration
with standard parameters and moment matching. The calibrated model matches key data
moments including the inventor labor supply elasticity estimates.

The calibrated model suggests that monopsony power over inventors slows down inno-
vation and economic growth significantly due to a combination of insufficient R&D em-
ployment and misallocation of inventors across firms. Forcing firms to be price takers in
the market for inventors increases economic growth from 1.50% to 1.70% per year—leading
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to a 11% welfare improvement. The acceleration in economic growth is driven both by a
2% rise in R&D employment as well as a significant improvement in aggregate R&D pro-
ductivity due to more productive allocation of inventors. Holding R&D employment fixed,
the improvement in the allocation of inventors alone accelerates economic growth rate by
18 p.p., highlighting the importance of the misallocation channel of size-dependent monop-
sony. I conclude by highlighting three forces that might limit the cost of monopsony: wage
discrimination among workers, firm entry, and the presence of socially inefficient differences
in firms’ ability to benefit from their inventions.

Literature. This paper is closely connected to three strands of the literature. First, I
contribute to the literature on monopsony power by providing novel evidence in the market
of corporate inventors and linking size-dependent monopsony power to R&D investments
and, thus, economic growth. The literature documents that monopsony power is perva-
sive in the production sector and stronger for larger employers (Azar et al., 2020; Arnold,
2021; Kroft et al., 2021; Lamadon et al., 2022; Yeh et al., 2022). Furthermore, there is
growing evidence of monopsony power in labor markets for “high-skilled” workers (Prager
and Schmitt, 2021; Goolsbee and Syverson, 2023; Seegmiller, 2023). I complement this
literature by documenting monopsony power over an important group of skilled workers:
corporate inventors. This group is crucial due to its close link to R&D investments, which
in turn are commonly identified as a main driver of long-run productivity growth in the
U.S. My model builds on the literature microfounding monopsony power via preferences
over employers. An alternative approach focuses on a lack of outside options for work-
ers as a microfoundation of monopsony power (Shi, 2023; Schubert et al., 2023; Bagga,
2023). I complement the theoretical literature by introducing preference-based monop-
sony power into a general equilibrium endogenous growth model with heterogeneous firms
and estimating that tackling monopsony power could significantly accelerate U.S. economic
growth. Relatedly, Berger et al. (2022) introduce a structural general equilibrium model of
the production with monopsony power.

Second, I contribute to the literature on resource allocation in the R&D sector. The
existing literature focuses primarily on the misalignment of private and public marginal
benefits of R&D investment, which can also lead to misallocation, rather than misalign-
ment of marginal costs as in my case. The literature has highlighted a range of potential
mechanisms for such misalignment including knowledge and business stealing externalities,
and differences in firms’ ability to profit from their inventions or protect their intellectual
property. Romer (1990) and Aghion and Howitt (1992) first argued that this misalignment
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can lead to under investment in R&D, while the more recent literature is focused on hetero-
geneous misalignment across firms that leads to misallocation of R&D resources (Acemoglu
et al., 2018; Cavenaile et al., 2021; Mezzanotti, 2021; Aghion et al., 2024; König et al., 2022;
Terry, 2023). I complement this literature by instead focusing on a misalignment in the
marginal costs perceived by the firm and a planner due to monopsony power.Interestingly,
this mechanism leads to the conclusion that large firms might not do enough R&D relative
to small firms, while the literature typically finds that they might do too much (Akcigit
et al., 2022; Manera, 2022; de Ridder, 2024). These findings suggests that both types of
mechanisms might partly offset each other in practice. My paper is also related to the
literature on talent (mis-)allocation in the R&D sector (Akcigit et al., 2020; Prato, 2022;
Celik, 2023). I complement this literature by focusing on market power as a source of talent
misallocation.

Finally, my paper falls within the larger literature on the macroeconomic implications
of factor misallocation, which has mostly focused on the production sector. Restuccia and
Rogerson (2008) and Hsieh and Klenow (2009) first argued that misallocation of production
factors may be significant and could have a large impact on productivity and output. The
subsequent literature investigated a range of potential sources of misallocation including
financial frictions, government intervention, information frictions, and adjustment costs
(Asker et al., 2014; Midrigan and Xu, 2014; David et al., 2016, 2022). More recently, the
literature has (re-)considered market power in product and labor markets as a significant
source of resource misallocation in the production sector that may significantly reduce
aggregate productivity and depress output levels (Loecker et al., 2020; Berger et al., 2022).
I contribute to this literature by focusing on misallocation in the R&D sector, which may
lead to slower innovation and economic growth rather than lower output levels. This focus
coincides with Lehr (2024), who studies misallocation in the R&D sector in general. This
paper is complementary as it studies and provides evidence for a particular mechanism of
misallocation in the R&D sector: monopsony power.

Organization. The remainder of this paper is structured as follows: Section 2 introduces
a heterogeneous firms model with size-dependent monopsony power and derives the key
implications for economic growth. Section 3 provides empirical evidence of monopsony
power in the market for inventors. Section 4 extends the model, calibrates it to match the
empirical evidence, and presents counterfactuals. Section 5 discusses additional factors and
Section 6 concludes.
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2 A Growth Model with Monopsony over Inventors

This section introduces preference-based monopsony power into a general equilibrium growth
model in the tradition of Romer (1990) to investigate the potential impact of monopsony
power on innovation and economic growth. The model is simplified to emphasize the main
insights and will be extended in Section 4 to introduce elements that may shape the model’s
quantitative predictions in a full calibration.

2.1 Model Description and Decentralized Equilibrium

Time is discrete and indexed by t. The economy is populated by a representative household
that supplies production and research labor and allocates its income between consumption
and savings. The final good is produced by a representative firm from producton labor and
intermediate inputs. The latter are produced by a unit mass of profit-maximizing research
firms that own their exclusive production rights. In turn, research firms hire researchers
and materials to invent new types of intermediate goods.

Workers and Labor Markets. There is a representative household with King-Plosser-
Rebelo preferences over consumption Ct and labor supply for production LP,t and R&D
LR,t represented by flow utility function U(Ct, LP,t, LR,t) (King et al., 1988):

U(Ct, LP,t, LR,t) =
(Ct · v(LP,t, LR,t))1−σ − 1

1− σ

with v(LP,t, LR,t) = exp
(
− ϵ

1 + ϵ

(
α
− 1

ϵ
P · L

1+ϵ
ϵ

P,t + α
− 1

ϵ
R · L

1+ϵ
ϵ

R,t

)) (1)

The parameter σ controls the intertemporal elasticity of substitution, while ϵ determines the
aggregate labor supply elasticity. The preference parameters αP and αR shift the supply
of production and research labor. The preferences are chosen to allow for a balanced
growth path with constant labor supply and steady consumption growth. The structure
of labor disutility is such that labor supply of both types is independent, which allows
for a separation of the production and R&D sectors. This assumption captures the idea
that production and research labor are very different tasks requiring very different skills or
training and, in practice, might be executed by different workers.

Labor supply for researchers itself is potentially differentiated, which captures the idea
that firms are imperfect substitutes from the perspective of workers due to e.g. differen-
tial amenities, management styles, company cultures or visions. I denote the supply of
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researchers for firm k ∈ [0, 1] by ℓkt and total labor supply LR,t is given by aggregator

LR,t =

(
ℓ+

1

1 + ξ

)−1

·

(∫ 1

0

∫
ℓkt

(
ℓ+

(
ℓ

LR,t

)ξ)
dℓ · dk

)
with ξ ≥ 0. (2)

The aggregator integrates over firms as well as over workers within firms, where the marginal
disutility for is increasing in the number of workers hired as long as ξ > 0. This formulation
captures the idea that workers have idiosyncratic preferences over employers such that firms
hiring more researchers face ever less enthusiastic workers at the margin. As long as ℓ̄ = 0,
the aggregator is of the CES-type and, thus, has a constant elasticity with respect to labor
supply for an individual firm. For ℓ̄ > 0, the aggregator is non-homothetic with a rising
elasticity with respect to ℓkt such that larger employers face more inelastic R&D labor
supply. Solving the inner level of aggregation, we have

LR,t =

(
ℓ+

1

1 + ξ

)−1

·

(∫ 1

0

ℓkt ·

(
ℓ+

1

1 + ξ

(
ℓkt
LR,t

)ξ)
dk

)
.

From this formulation, we can immediately see that scaling by LR,t on the right-hand side
ensures that proportional shifts in ℓkt across all firms map 1-for-1 into LR,t.

The household receives income from three sources: labor supply, firm ownership, and
bond holdings. Production workers are paid common wage WP,t, while researchers are paid
firm-specific wages WR,kt. Bonds holdings Bt earn gross interest Rt+1 in the subsequent
period and firm ownership yields profits Πt. The household owns all firms.

Note that I do not allow firms to pay discriminate wages across researchers, but instead
force them to pay a single firm-level wage. Labor supply then implies that the wage is set
such that it compensates the last hired researcher for their labor supply. This assumption
is crucial to generating monopsony power in this model as firms take into account that they
have to pay inframarginal researchers higher wages to attract additional researchers at the
margin. I discuss the implication of price discrimination in the discussion section.

Finally, the household allocates income across consumption Ct and riskless bond hold-
ings Bt, which are in 0 net-supply and earn gross return Rt+1 in the following period. The
budget constraint is thus given by

Bt+1 + Ct = Rt · Bt +WP,t · LP,t +
∫ 1

0

WR,kt · ℓkt · dk +Πt. (3)
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The household discounts the future at rate β < 1 and the combined probem is given by

max
{Ct,LP,t,{ℓkt}k∈[0,1]}

∞∑
t=0

βt · U(Ct, LP,t, LR,t) s.t. (1), (2), and (3). (4)

Final Production. A representative firm hires production labor LP,t and buys interme-
diate inputs {xjt}j∈Qt to produce output Yt with production function

Yt = L1−α
P,t

∫
Qt

z1−αjt · xαjtdj, (5)

where zjt is a demand-shifter for intermediate inputs. The firm takes as given the wage
WP,t and intermediate input prices pjt and maximizes its profits:

max
LP,t,{xjt}j∈Qt

Yt −WP,t · LP,t −
∫
Qt

pjt · xjtdj s.t. (5). (6)

Intermediate good producers. Intermediate goods in the economy are protected by
patents such that they can only be produced by their proprietor. There is a unit mass of
intermediate good firms, which act as proprietors, with constant unit cost ψ in terms of
the final good. For each intermediate good, the proprietor solves

πjt = max
xjt

pjt · xjt − ψ · xjt (7)

subject to the product demand curve from the final production sector.

Innovation Each intermediate goods firm can hire ℓkt research workers to produce new
blueprints Mkt+1 in the subsequent period subject to wage cost WR,kt according to produc-
tion function

Mkt+1 = Qt · Ak · ℓγkt, (8)

where Qt =
∫ Qt

0
zkt ·dk is the quality adjusted mass of products, which is also the aggregate

state of technology, and Ak is a firm-specific productivity shifter.
New blueprints are added to their stock of protected products such that the quality

adjusted mass of inventions Qkt evolves according to

Qkt+1 =Mkt+1 · zkt+1 +Qkt. (9)

The product-specific demand-shifter is determined at the point of invention and is
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identical to all products invented by the same firm in the same period.1 Firms’ demand-
shifter is persistent and evolves according to

ln zkt+1 = (1− ρ) · µ+ ρ · ln zkt + σ · νkt+1 with νkt+1 ∼ N(0, 1). (10)

Intermediate firms hire researchers to maximize their value

Vt(Qkt, zkt) = max
ℓkt

{∫
j∈Qkt

πjt · dj −Wkt · ℓkt +R−1
t+1 · Et [Vt+1(zkt+1, Qkt+1)|zkt]

}
(11)

subject to the labor supply curve and the evolution of their portfolio of inventions.

Growth. The aggregate state of technology Qt =
∫ 1

0
Qkt · dk evolves according to

Qt+1 = Qt +

∫ 1

0

Mkt+1 · zkt+1 · dk. (12)

Market Clearing. Labor market clearing is implicit in the household setup such that
the only remaining market that needs to be cleared is the product market, which requires:

Yt = Ct + ψ ·
∫
Qt

xjt · dj (13)

The private equilibrium definition is standard and formalized in Definition 1.

Definition 1 (Decentralized Balanced Growth Path Equilibrium). A sequence of quantities
and prices such that (a) households maximize utility by solving (4), (b) firms maximize
profits by solving (6) and (7), and firm value by solving (11), (c) markets clear (13), (d)
quantities grow at a constant rate g = Qt+1/Qt − 1, except for labor supply, which remains
constant at the aggregate level.

1Alternatively, one could assume that demand for all products fluctuates concurrently at the firm level.
Such an assumption will affect the precise algebra of the model, but not the qualitative or quantitative
properties of the model with respect to the innovation sector.
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2.2 Planner’s Problem

To study optimal policy, it is useful to introduce the planner problem. The planner chooses
quantities to maximize expected utility:

max
∞∑
t=0

βt·U(Ct, LP,t, LR,t) s.t. (1), (2), (5), (10), (13), and

Qt+1/Qt − 1 =

∫ 1

0

Ak · zkt+1 · ℓγkt · dk
(14)

The associated equilibrium definition is provided in Definition 2.

Definition 2 (Planner Balanced Growth Path Equilibrium). A sequence of quantities that
solve the planner problem (14) such that productivity Qt grows at a constant rate g.

2.3 Monopsony in R&D and Growth

The characteristic feature of monopsony power is that firms’ wages respond to their demand
for labor and that firms take this effect into account. Proposition 1 highlights the first
property in the model by showing that firms’ R&D wages respond to their demand for
R&D workers. Furthermore, this sensitivity is stronger for firms that are already larger
when ℓ̄ > 0, i.e., in the case of log-concave labor supply. Resultingly, firms’ demand for
R&D workers becomes less sensitive to R&D productivity shocks or targeted subsidies as
they get larger.

How do these properties compare to the allocation in a planner equilibrium? It turns
out that the sensitivities to R&D productivity or subsidies coincides in the planner and
decentralized equilibrium as long as monopsony power is log-linear, i.e., ℓ̄ = 0. With
log-concave R&D labor supply, the demand for R&D workers is less sensitive in the de-
centralized equilibrium as the sensitivity of wages changes alongside the wages or marginal
products themselves, which is only taken into account by profit maximizing firms.

Derivations and proofs are provided in Appendix A.

Proposition 1 (Wages in the R&D sector). Consider an R&D subsidy (1 − τkt). The
elasticity of the firm’s R&D wage with respect to a change in R&D workers induced by a
small change in the subsidy rate is given by

∂ lnWR,kt

∂ ln ℓkt

∣∣∣∣∣
∆τkt

= ξ · (ℓkt/LR,t)
ξ

ℓ̄+ (ℓkt/LR,t)ξ
, (15)
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which is positive if ξ > 0 and, in addition, increasing in the firm’s relative R&D employ-
ment if ℓ̄ > 0. Furthermore, firms’ equilibrium R&D employment becomes less sensitive to
productivity shocks with monopsony power, ξ > 0, and particularly so for larger firms if
ℓ̄ > 0 as well. Relative to a planner equilibrium, firms’ R&D employment is equally sen-
sitive to productivity shocks in the decentralized equilibrium as long as ℓ̄ = 0 and becomes
less sensitive in the case of ℓ̄ > 0 as inventor employment increases.

Proposition 2 highlights two effects of monopsony power on equilibrium R&D employ-
ment. Firstly, monopsony power lowers the equilibrium R&D effort vis-a-vis a world with-
out it as long as the aggregate supply of inventors is not perfectly inelastic. Even in absence
of monopsony power, the decentralized equilibrium features insufficient R&D due to an in-
sufficient market size, which is linked to the monopoly distortion in the product market,
and intertemporal knowledge externalities. Monopsony power thus further increases this
gap. Secondly, with log-concave labor supply, the relative allocation of R&D workers in
the decentralized equilibrium is skewed towards small firms as the former take advantage
of their higher monopsony power by reducing their demand for R&D workers. Thus, in this
case, not only the aggregate level of R&D employment is too low, but R&D workers are
also not optimally allocated across firms from the perspective of a planner, which further
reduces economic growth. I refer to the latter as misallocation.

Proposition 2 (Efficiency in the R&D sector). Denote quantities in the Decentralized
and P lanner equilibria by superscripts and suppose ℓ̄ = 0, i.e., labor market power is
homogeneous. Then, employment of R&D workers is insufficient in the decentralized equi-
librium (LDR,t < LPR,t), however, their relative allocation across firms is efficient, i.e.,
ℓDkt/ℓ

D
mt = ℓPkt/ℓ

P
mt ∀k,m. The efficient equilibrium can be achieved with untargeted output

and R&D subsidies. Conversely, suppose that the aggregate level of R&D workers is fixed,
i.e. ϵ → 0, then R&D employment is efficient as long as labor market power is homoge-
neous. With differences in R&D labor market power, the allocation of R&D workers in the
decentralized equilibrium is inefficiently tilted towards smaller firms, i.e., ℓDkt/ℓDmt < ℓPkt/ℓ

P
mt

if ℓDkt > ℓDmt. An efficient equilibrium can only be achieved by targeted R&D subsidies.

What are the policy implications? In the case of common monopsony power, the planner
equilibrium can be achieved by a general subsidy to firms’ R&D activity or, alternatively,
by subsidizing R&D workers. Such a subsidy becomes ever more important the more elastic
the supply of R&D workers in the economy. In the case of heterogeneous monopsony power,
general R&D subsidies are insufficient and targeted interventions become necessary. The
optimal (marginal) R&D subsidy rate is larger for firms hiring more inventors.
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Optimal policy under size-dependent monopsony power suggests that large employers
of inventors should hire even more of them and, thus, appear to invest too little into R&D.
This result is in stark contrast to the recent literature arguing that large firms might invest
too much in R&D relative to small firms (Aghion et al., 2024; de Ridder, 2024). Both views
are easily reconciled when considering the source of heterogeneity in innovation activity. In
my model, heterogeneity is driven by productivity differences across firms that a planner
would also consider when allocating R&D workers. In contrast, differences in R&D activity
across firms in the aforementioned papers are driven by heterogeneity in the ability to profit
from innovation, which leads large firms to do too much R&D relative to a planner, who
would not factor in firms’ ability to charge higher markups when deciding on the allocation
of R&D resources. In practice, both forces might be partly offsetting with ambiguous net
effects. This paper focuses on quantifying the effect of monopsony power only.

Finally, there are tell-tale signs of monopsony in the model that do not require esti-
mating the labor supply elasticity. In particular, the R&D return, or the ratio of R&D
output to its costs, is an increasing function of firms’ R&D employment if and only if there
is size-dependent monopsony power, as shown in Proposition 3. Intuitively, firms with
more monopsony power are able to achieve higher R&D output relative to R&D costs by
supressing wages. The link between monopsony power and R&D employment then extends
to the R&D returns. In contrast, if firms acted as price takers, they would equalize wages
to marginal products of R&D workers and, thus, also equalize R&D returns at a common
value. Finding a positive correlation between R&D returns and R&D employment is thus
a potentially strong signal of size-dependent monopsony power.

Proposition 3. Let the expected R&D return of a firm be the ratio of the expected value
created from innovation to the total cost. Its equilibrium value is given by

Expected R&D Returnkt ≡
Mkt+1 · Et[zkt+1|zkt] · π̃t+1/Rt+1

WR,kt · ℓkt
=

1

γ
· (1 + 1/ϵkt). (16)

It is constant across firms if and only if ℓ̄ = 0 and increasing in ℓkt for ℓkt > 0. The average
product of an R&D worker is increasing in ℓkt if ξ > 0 and ℓ̄ ≥ 0, and constant otherwise.

3 Evidence

This section provides evidence on monopsony power in the market for inventors in the U.S.
I first describe how I measure key variables in my estimation, including R&D employment
and wages, before discussing the estimation strategy and presenting the estimates.
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3.1 Data

My data combine information on the financial performance and innovation activity of US
listed firms. Using firm-level data is key in my context since the firm-level elasticity of
labor supply is different from the market-level elasticity in the model presented above. As
formally shown in Proposition 4 in the Appendix, market level variation in R&D wages
and employment can only identify the aggregate R&D labor supply elasticity ϵ, rather than
the parameters of the firm-level R&D labor supply elasticity {ξ, ℓ̄}. Intuitively, individual
firms can expand R&D employment by hiring from competitors or by hiring from non-
employment. However, if all firms expand, then only the latter option is feasible, leading
to a potentially different labor supply elasticity.

I obtain financial data from WRDS Compustat, who collect and harmonize them based
on mandatory filings by the company. The data extend back to 1959 and their availability
is tied to the company’s listing status. Variables of interest include R&D expenditure (xrd),
employment (emp), and stock market returns. I combine this data with information on
firms’ patenting activity using the crosswalk between firms and patents developed in Kogan
et al. (2017). The patent data from Kogan et al. (2017) and the USPTO’s Patentsview
database includes information on firms’ granted patents, including application date and
technology classification, and the inventors that contributed to the patent.

Patents are arguably the most direct measure of R&D output available to researchers. A
patent captures an invention that the issuing patent office, here the USPTO, deemed new
and useful, and grants the owner exclusive rights to the use of the invention described
therein. These rights give firms strong incentives to patent inventions, making newly
granted patents a prime source for information on firms’ innovation activity. Nonetheless,
it is well known that not all inventions are patented such that patent-based information
may be incomplete (Cohen et al., 2000; Mezzanotti and Simcoe, 2023).

The primary variables of interest when investigating monopsony power are employment
and wages. I measure inventor employment using patent records. I link inventors across
patents using the USPTO’s disambiguation and assign them to firms based on whether
they are listed on a firm’s newly-granted patent in the year prior to the application. I then
aggregate to the firm-level by summing over all inventors. This measure may be incom-
plete, e.g., because not all active researchers at the firm are listed on a patent within a
given period, however, it provides a readily available measure of innovators contributing
to the firms’ patent output. I construct three additional measures using a full-time equiv-
alent approach, only inventors located in the US, or focusing on the inventors identified
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by Kaltenberg et al. (2021). I similarly create a measure on inventor productivity using
lifetime patenting measures and calculate average inventor productivity at a firm using the
appropriate averages. See Appendix B.1 for additional details.

I measure inventor wages as the ratio of R&D expenditure divided by inventor employ-
ment. This measure suffers from three potential concerns. First, not all R&D expenditure
is on labor inputs as R&D often also requires material inputs and machinery. NSF statis-
tics suggest that R&D is very labor intensive with a labor share of costs of 79% in 2021.2

Thus, we might expect some measurement error from this misspecification, but it is likely
small as I discuss in Section 4. Second, my measure of inventors might be incomplete as
discussed above, which will add measurement error. Third, the implicit assumption when
measuring inventors is that R&D projects result in a patent application within a given
year. In practice, there might be research projects with larger time horizons, which could
result in a misalignment between R&D expenditure and recorded patents that shows up as
measurement error. My analysis, thus, needs to take into account potential measurement
error in R&D wages.

As discussed in the previous section, the R&D return can be informative about monop-
sony power. I measure it as the ratio of valuations of new patent to previous year’s R&D
expenditure at the 5-year horizon:

R&D Returnit ≡
∑4

s=0 Patent Valuationsit+s∑4
s=0 R&D Expenditureit−1+s

. (17)

I also construct measures of firms’ dominance in their technology markets and inventor
specialization, which are described in the text and Appendix B.1.

I restrict the sample to 1975-2014 and drop firms with consistently low R&D expendi-
tures (less than 2.5m 2012 USD per year), low patenting (less than 2.5 patents per year)
or less than 5 sample years. The final sample has about 15,000 observations for 900 firms
and covers more than 80% of R&D expenditure in Compustat and patent valuations in
Kogan et al. (2017) for the 1975-2014 period as well as 40% of the R&D recorded in BEA
accounts. See Appendix B.1 for further data details.

2I calculate this figure using Table 10 in the NSF’s Business Enterprise Research and Development
Survey statistics for 2019. In my calculations I exclude “other” R&D expenditure and “other purchased
services" and add 1/3 to the expenditure on depreciation to capture cost of capital assuming a 5% interest
rate and 15% depreciation rate. Total R&D expenditure on labor includes “salaries, wages, and fringe
benefits," "stock-based compensation," and "temporary staffing." The labor share in all R&D expenditure
is 67%, while the labor share for adjusted R&D expenditure is 79%. See Online Appendix D.1.
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3.2 Estimation Approach

The inverse labor supply elasticity for inventors determines the extent of monopsony power
in the model presented in the previous section and is, thus, key to understanding its impact
on the innovation economy. The elasticity can be estimated by regressing log changes
in the inventor wage on changes in log inventor employment as shown in equation (18)
(Manning, 2003). The coefficient on the changes in inventor employment identifies the
average inverse labor supply elasticity if the error term is uncorrelated with changes in
inventor employment. Running the regression in differences has the benefit of accounting
for long-run differences in levels. In my baseline, I select t − 2 as reference period and
investigate the change up to t+ 3. I also provide results for alternative horizons k.

∆k ln Inventor Wageit = ϵ̄k ×∆k ln Inventorsit + αj(i)×t + εit (18)

Estimating this equation in OLS can lead to biased estimates in the presence of labor
supply shocks, which simultaneously affect wages and employment, and, thereby, violate
the exclusion restriction. For example, if workers exogenously become more attracted to a
firm, we might expect that it can lower wages, while hiring more workers. However, this
variation does not identify the response of wages if the firm wanted to expand employment
in absence of such a shock. In summary, supply shocks confound the estimation of a supply
elasticity, and we, thus, need demand shocks for identification.

To address this concern, I propose to use stock market returns in t − 1 as an instru-
ment for changes in inventor employment, which follows Seegmiller (2023)’s identification
strategy for the overall labor supply elasticity. The instrument is relevant if stock mar-
ket returns reflect changes in firm productivity or consumer demand that incentivize it
to expand production. Expansion then increases the market size for new products, which
gives the firms an incentive to expand R&D as well. The exclusion restriction requires that
stock market returns do not affect inventor wage growth other than through their impact
inventors employment growth. As a robustness check, I also present results using firm-level
TFP shock constructed from Imrohoroglu and Tuzel (2014).

I connect the inverse labor supply elasticity to inventor employment with an interaction
term for firms with above median R&D employment in the previous year. Under size-
dependent monopsony power, we expect a positive coefficient on the interaction term, as
firms with large inventor employment face a high inverse labor supply elasticity. I follow
a similar approach for above and below median R&D return, which is also linked to the
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inventor supply elasticity as discussed in the previous section.

∆ ln Inv. Wageit = ϵl ×∆ ln Inv.it
+ (ϵh − ϵl)×∆ ln Inv.it × {Above Median Inventors}it
+ β{Above Median Inventors}it + αj(i)×t + εit

(19)

The exclusion restriction for the interaction terms requires that the growth rate of R&D
wages is not linked differentially to stock returns for larger firms other than through their
impact on R&D employment growth.

There are several potential identification challenges. First, stock market returns may
partly reflect labor supply shocks if they increase firm value.3 The estimated elasticity may
then be downwards biased as supply shocks, such as preference shocks, lower wages and raise
employment. These shocks may also bias the interaction coefficient, e.g., if labor supply
shocks are more important for firms with larger R&D employment.4 Second, incentive pay
for researchers, e.g., via granted stock options or payment in shares, may lead to a violation
of the exclusion restriction by inducing a correlation between returns and inventor wages
unrelated to inventor employment.5 However, this is only a concern if the incentive pay
is structured such that stock market returns affect the level of compensation. Note also
that I investigate differences in R&D wages between t+ 3 and t− 2 and instrument using
returns in t− 1. Thus, my estimation should be robust if bonuses are one-off and are paid
out in t− 1 or t.6 Incentive pay could also bias estimate of the interaction regression, e.g.,
if firms with larger R&D employment rely more on it.7 Finally, the measured R&D wages
include non-labor expenditure and, thus, wage growth may measured with error. Such
measurement error biases the regressions if it is systematically related to the instrument.8

I consider this threat together with incentive pay explicitly when quantifying the aggregate
implications of R&D monopsony power.

3Importantly, these supply shocks need to apply to the market for inventors rather than other workers.
A shock that lowers required wages for the non-inventor workforce without affecting required wages of
inventors does not violate the exclusion restriction.

4For example, larger employers might rely more on their reputation to hire and retain inventors, which
may expose them more to preference stocks.

5About 12% of total labor compensation in R&D is stock-related (NSF BERDS, 2019).
6Alternatively, stock-based compensation is not a concern if it merely affect how compensation is paid

out, e.g., 15% in stocks, rather than the level of compensation. I discuss alternative models of such bonus
payments in Appendix C.1.

7Data from the NSF suggests that larger firms, as measured by total employment, do rely more on
incentive pay, however, the difference is quantitatively small.

8I discuss this issue in detail in Appendix C.3. The bias depends, among other things, on the elasticity
of substitution between materials and inventors.
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3.3 First-stage and Reduced Form

I report the first stage results in Panel A of Figure 1. Stock market returns are associated
with a significant subsequent expansion of inventor employment. The baseline estimate
(t = 3) suggests that a 10% increase in the firm valuation is associated with a 2% expansion
of R&D employment. The estimate is highly statistically significant and has an associated
F-statistic comfortably above the commonly referenced threshold of 10. R&D employment
rises gradually over time, echoing estimates for regular workers in Seegmiller (2023).

Figure 1: First Stage and Reduced Form Estimates
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Panel B reports the reduced-form estimate confirming that stock market returns are
significantly associated with rising R&D wages. The baseline estimate suggests that a 10%
increase in firm value is associated with a 1% rise in R&D wages. Combining first-stage and
reduced-form estimates implies an average labor supply elasticity around 1%/2% ≈ 0.5.

3.4 Second Stage Results

My estimation results, as reported in Table 1, reveal three novel findings. First, the esti-
mated inverse labor supply elasticity is positive and significant. A 10% increase in employ-
ment requires 4.4% higher wages. For comparison, Seegmiller (2023) estimates a slightly
larger elasticity of 0.84 for high-skilled workers using LEHD data on wages and employment.
The estimated elasticity suggests that workers receive about 1/(1 + 0.437) ≈ 70% of their
marginal product in wages. Second, the heterogeneity analysis across firm-size suggests
that this effect is coming exclusively from firms with a large inventor workforce. A firm
with above median inventors faces an elasticity of about 0.75 implying that a 10% increase
in employment requires 7.5% larger wages, while there is no significant impact on smaller
firms. These estimates suggest that inventors working for large innovative firms receive 57%
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of their marginal product in wages, while R&D workers at small innovative firms receive
their entire marginal product.9 Third, column (3) reveals that firms with large R&D return
also face less elastic inventor supply, as predicted by the model. Quantitatively, the esti-
mates are closely aligned with the results for inventor employment. Remaining differences
may be due to the fact that R&D returns are a noisy measure of labor market power as
they reflect all frictions faced by the firm. In summary, the evidence suggests that smaller
firms face competitive labor markets for inventors, while larger firms have some monopsony
power.

Table 1: Inverse R&D Labor Supply Elasticity Estimates

(1) (2) (3)
R&D Wage Growth

R&D Employment Growth 0.437*** -0.039 0.012
(0.150) (0.120) (0.158)

— × Above Median R&D Employment 0.746***
(0.201)

— × Above Median R&D Return 0.647***
(0.186)

First stage F stat. (Main) 67 39 31
First stage F stat. (Inter.) – 30 95
Observations 12,772 12,772 12,772

Note: R&D employment and wage growth are log differences between t − 2 and t + 3. R&D employment
growth is instrumented for with stock market returns in t − 1. All regressions control for NAICS3 × year
fixed effects. F statistics reported are based on Sanderson and Windmeijer (2015). Standard errors are
clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

I consider several robustness exercises. First, one concern might be that expanding
firms do not only hire more, but also better inventors. Observed wage growth may then
reflect a composition effect rather than an increase in quality-adjusted wages. I investigate
this concern by constructing proxies for inventor productivity and including them as control
variables in my regression.10 The associated regression results, as reported in Appendix Ta-
ble B.4, suggest that inventor quality is positively associated with inventor wages, however,
this relationship does not quantitatively alter the estimated inventor supply elasticities.

Second, I control for pre-trends by adding lagged employment and wage growth as in
Seegmiller (2023), which does not significantly change estimated coefficients as reported in

9These estimates do not imply that wage levels are larger for smaller R&D employers as marginal
products may differ substantially.

10I follow an AKM approach for annual R&D output for individual inventors and construct annual firm-
level measures of inventor quality by averaging over the inventor fixed effects for all employed inventors.
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Appendix Table B.1. Third, I explore robustness with respect to the measure of inventors
in Appendix Table B.2 and find essentially identical estimates when alternatively using
(1) a full-time equivalent measure of inventors, (2) only US inventors, or (3) only verified
inventors as identified by Kaltenberg et al. (2021). Finally, I find quantitatively larger
estimates when using TFP shocks instead of stock market returns as instrument, however,
the estimates are less precise due to a weaker first stage. Nonetheless a similar pattern
emerges, confirming that large firms or those with high returns have monopsony power.

4 Quantification

The evidence presented in the previous section suggests a potentially meaningful role for
monopsony power in the market for inventors. This section quantifies its impact on inno-
vation and economic growth in an extension of the model introduced in Section 2 that is
calibrated to match the evidence.

4.1 Quantitative Model

There are at least three challenges in using the model presented in Section 2 together with
the evidence in Section 3 to investigate the economic impact of monopsony power in R&D.
First, my sample is restricted to listed firms, which tend to be larger. Consequently, I might
overstate the importance of monopsony power by using evidence on large firms, which have
more monopsony power according to the evidence presented above, while ignoring the
40% of R&D expenditure accounted for by smaller firms.11 Second, the model ignores
non-labor inputs in R&D, which account for 20% of R&D expenditure in practice (see
Appendix D.1). As I discuss below, introducing intermediate inputs dampens the impact
of monopsony power as firms can substitute them for R&D workers. Finally, the model
abstracts from pay linked to firm performance such as stock-based compensation, which
may bias estimated firm-level labor supply elasticities.12

To address these challenges, I extend the baseline model along three dimensions. First,
I introduce non-listed firms by allowing for two types of firms with different baseline R&D
productivities {Al, Anl}. I fix the mass of firms for each type exogenously to match data

11Total R&D expenditure in the Compustat sample in 2019 is 340 billion USD, while the NSF reports
a total expenditure on R&D for all firms of 564 billion USD, implying that listed firms account for 60% of
R&D expenditure. For 2000, this share is slightly higher at 72%.

12For example, Kline et al. (2019) estimate that a significant share of the value created from patent
grants is captured by high-skilled workers in small firms. Card et al. (2018) and Friedrich et al. (2021)
provide evidence of pass-through of firm shocks to worker wages.
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from the NSF and denote the share of listed firms by ζ. As shown below, non-listed firms
tend to have much smaller R&D budgets and, thus, R&D employment. As a result, adding
these firms to the model introduces a mass of firms with relatively low monopsony power,
as long as ℓ̄ > 0, which reduces its overall impact on economic growth.

Second, I introduce stock-based compensation to account for a potential direct link
between wages and firm performance. I assume that a fraction of the R&D wage is paid in
the form of a fixed number of stocks in the next period that is set to constitute a constant
share of expected wages. The number of shares is set one period in advance such that
workers at fortunate firms receive an unexpected pay increase. Consequently, a fraction of
the realized wage is directly linked to stock market returns for the firm, which, as discussed
above, constitutes a violation of the exclusion restriction for using stock market returns
as an instrument for R&D productivity shocks when estimating the inverse labor supply
elasticity. 13 Introducing this channel directly in the model allows me to take this empirical
challenge into account when assessing the extent of monopsony power.

Finally, I augment the R&D production function to include intermediate inputs Rkt via
a standard CES aggregator:

Mkt+1 = Qt · Ak ·

(
α

1
θ
L · ℓ

θ−1
θ

kt + (1− αL)
1
θ ·
(
Rkt

Qt

) θ−1
θ

)γ· θ
θ−1

. (20)

The new production function nests the original one with αL = 1. The normalization by Qt

is necessary to allow for a balanced growth path. Intermediate inputs are produced 1-for-1
from the final outputs such that the aggregate resource constraint becomes:

Yt = Ct +

∫ 1

0

xkt · dk +
∫ 1

0

Rkt · dk. (21)

Introducing intermediates is important as I proxy for R&D wages using the ratio of
total R&D expenditure to R&D employment, which can be an imperfect measure if R&D
expenditure includes materials and machinery. I show in Appendix C.3 that the changes
in R&D per inventor become a potentially biased proxy for changes in R&D wages in this
setup, where the bias depends on the elasticity of substitution between inputs as well as the

13To give a numerical example, consider workers at a firm have an expected wage of 0.5 tomorrow and
expect the firm to have value 1.5. The stock-based compensation is set such that workers expect to earn
15% of their salary through stock-based compensation. Then, workers will receive 15%·0.5

1.5 = 0.05 shares
of the firm tomorrow. Suppose that wages are fixed, however, the firm’s value could be 2 or 1 tomorrow.
Then, if the value goes up, workers receive 2 · 0.05 + 0.85 · 0.5 = 0.525 in compensation, while they receive
1 · 0.05 + 0.85 · 0.5 = 0.475 if the value goes down. This mechanism, thus, yields a positive correlation
between stock returns and compensation even though expected wages are constant.
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markdown. Intuitively, firms increase their materials share when they expand if markdowns
increase in R&D employment, which makes R&D expenditure more responsive relative to
employment and, thus, R&D expenditure per worker becomes more responsive than R&D
wages. Hence, one might over-estimate the degree of monopsony power in R&D when using
R&D expenditure per worker rather than R&D wages, however, this bias can be accounted
for within the model.

4.2 Calibration

I parameterize the quantitative model using a combination of external and internal calibra-
tion.14 For the external calibration, I pick a standard value for discount factor β = 0.97,
which together with a targeted growth-rate of 1.5% implies an annual risk-free interest rate
of 5%. I set the R&D scale elasticity to γ = 0.5 as in Acemoglu et al. (2018) and calibrate
the demand parameter α to achieve a markup (1/α) of 25%. Following Chetty et al. (2012),
I set the aggregate labor supply elasticity to ϵ = 0.5, such that an exogenous 1% rise wages
would raise aggregate employment by 0.5%. Next, I set the elasticity of substitution be-
tween materials and labor in R&D to θ = 0.5, which is in line with the estimates for the
production sector in Oberfield and Raval (2021).15 Finally, I set the share of listed firms
to 5% based on the firms in my sample compared to the NSF R&D surveys.16

For the internal calibration, I target a set of macro and micro moments. At the aggregate
level, I target an annual growth rate of 1.5% and a relative size of listed to non-listed firms
of 35, which is in line with the relative size of firms in my sample and in the NSF aggregate
statistics. These moments are particularly informative about the average R&D productivity
of listed and non-listed firms {Anl, Al}. I target a total labor supply of 1/3, equivalent to
8 hours per day, whereof 14.6% work in R&D as in Acemoglu et al. (2018), to pin down
the labor disutility parameters {αP , αR}. Finally, I target a labor share of 79% in R&D to
pin down the relative importance of labor in the R&D production function αL.17 Next, I
target a set of micro-moments from the data together with the evidence presented in the
previous section. In particular, I target the standard deviation of the R&D growth rate

14See Appendix A.2 for a full description of the quantitative model together with the (recursive) balanced
growth path equilibrium. Additional details on calibration and simulation are also presented there.

15Unfortunately, there is no good evidence on the degree of substitution between capital and labor in
the R&D process. Furthermore, it is not clear ex-ante whether that degree should be lower or higher than
in the production process. On the one hand, human capital is critical to the generation of new ideas and,
thus, R&D. On the other hand, some lab tasks might be highly prone to automation.

16My sample in 2000 has 1,068 firms, while the NSF reports 17,757 firms in total conducting R&D. For
2019, my sample has 480 firms, while the NSF reports a total of 9,890 firms conducting R&D. These figures
imply a share of listed firms among R&D conducting firms of 4.9% and 6% for 2019 and 2000, respectively.

17I calculate this figure based on NSF data. See the calculations in Section 2 and Online Appendix D.1.
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for listed firms together with the auto-correlation of R&D to pin down the parameters of
the demand process {σ, ρ}. I calculate these moments in the model using simulation and
focusing on listed firms only. At last, I target the regression evidence in columns (1) and
(2) of Table 1 to inform the monopsony parameters {ξ, ℓ̄}.

Table 2: Parameters and Calibration Targets for Main Calibration

A. Parameters
Parameter Symbol Value Source

A.1. External calibration
Discount factor β 0.96 Standard value
Labor supply elasticity ϵ 0.50 Chetty et al. (2012)
R&D scale elasticity γ 0.50 Acemoglu et al. (2018)
Share of non-listed firms ζ 0.05 NSF BRDIS 2019
Markup parameter α 0.80 Terry (2023)
Elas. of substitution in R&D θ 0.50 Oberfield and Raval (2021)

A.2. Internal calibration
Labor disutility production αP 0.205 Direct
Labor disutility R&D αR 0.121 Direct
Labor weight in R&D αL 0.968 Direct
R&D productivity listed Al 0.261 Moment matching
R&D productivity unlisted Anl 0.014 Moment matching
Std. dev. R&D prod. shocks σ 0.238 Moment matching
Autocorr. R&D prod. shocks ρ 0.985 Moment matching
Avg. R&D supply elasticity ξ 1.922 Moment matching
Rel. R&D supply elasticity ℓ̄ 57.3 Moment matching

B. Moments
Moment Data Model Source

Growth rate 0.015 0.015 Data
Relative R&D listed vs non-listed 35 35 Data
Std. dev. of R&D growth-rate 0.316 0.316 Data
Autocorr. of R&D 0.922 0.923 Data
Wage elasticity 0.437 0.436 Data
Wage elas. for small R&D 0 0.201 Data
∆ wage elas. large R&D 0.746 0.747 Data
Labor share in R&D 0.79 0.79 Data
R&D employment 0.047 0.047 Acemoglu et al. (2018)
Production employment 0.286 0.286 Acemoglu et al. (2018)

Notes: This table reports calibrated parameter values and targeted moments in the data and model.
Panel A reports parameter values distinguishing between externally calibrated parameters in Panel
A.1 and internally calibrated parameters in Panel A.2. Panel B reports the targeted moments from
the data and the model values from the calibration. See text for additional details.
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Table 2 reports the calibrated parameters, and the targeted moments for the internal
calibration and their counterparts in the model. The model fits well with the largest
deviation coming from the wage elasticity for small firms, which the model overestimates.

The model makes a range of predictions for the R&D returns under monopsony power
as discussed in Proposition 3. I confirm these in Table 3, which reports empirical esti-
mates in Column (1) and coefficients based on simulated data in Column (2). I investigate
two predictions that were not exploited in the calibration and that can be thought of as
untargeted moments. First, the model predicts a positive correlation between inventor em-
ployment and R&D returns as long as there is size-dependent monopsony power. Indeed, I
find a strong positive correlation in the data in Panel A and a highly similar coefficient in
the calibrated model.18 In the data, a 10% increase in inventor employment is associated
with a 2.5% higher R&D returns, while the calibrate model predicts a 2.2% larger return.
Second, the model predicts that shocks inducing firms to hire more inventors should also
be correlated with larger R&D returns. Indeed, panels B and C confirm that stock market
returns as well as productivity growth is positively correlated with R&D returns in the
data and the model, with estimates of similar magnitude. Finally, note that the model
cannot account for these pattern if firms effectively act as price takers, i.e., in absence of
size-dependent monopsony power, as R&D returns are a constant in that case.

Finally, I confirm in Appendix C.4 that the calibration would overstate the degree of
monopsony power if I did not account for materials in R&D and stock-based compensation.

4.3 Counterfactuals

Table 4 investigates the importance of monopsony power in the calibrated model. The first
column reports values for the baseline model, while columns 2–4 present counterfactual
economies. The “Full” counterfactual shuts down monopsony power entirely through off-
setting subsidies such that firms effectively act as price takers in the R&D labor market.
The “Fixed L̃R” scenario induces firms to act as price takers, but holds constant total R&D
employment L̃R =

∫ 1

0
ℓkt · dk through an untargeted R&D tax. Thus, this scenario focuses

exclusively on the impact of reallocating R&D employment across firms. Finally, scenario
∆L̃R leaves monopsony power in place but implements the aggregate R&D employment
of the “Full” counterfactual through an R&D subsidy. This scenario, thus, quantifies the

18I also find in Appendix Table B.5 that the correlation between R&D returns and inventors is robust
to controlling for overall employment, which does not predict returns conditional on R&D employment.
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Table 3: R&D Returns and Monopsony

(1) (2)
A. Inventors ln R&D Return
ln Inventors 0.253*** 0.221***

(0.031) (0.000)

B. Stock Market Return ln R&D Return
Lagged Excess Return 0.258*** 0.250***

(0.031) (0.004)

C. Productivity growth ln R&D Return
Lagged TFP Growth 0.220*** 0.111***

(0.044) (0.003)

Source Data Model
Monopsony — Yes
Observations 7,931 99,994

Note: This table reports OLS coefficient estimates. Column (1) reports
estimates from the sample. Columns (2) and (3) report estimates from
simulated data from the model. See text and Appendix ?? for details.
Standard errors are clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

impact of lower aggregate demand for R&D workers compared to a no-monopsony world.19

Table 4 reveals substantial economic costs of monopsony power. In its absence, growth
accelerates from 1.5% per annum to 1.7%—a 13% increase—yielding a 11% welfare im-
provement in consumption equivalent terms. These effects are comparable to other market
distortions: Berger et al. (2022) estimate that monopsony power in the production sector
reduces output by 21% and welfare by 7.6%, while Aghion et al. (2024) estimate that re-
solving static and dynamic misallocation from heterogeneous product market power across
firms would boost economic growth by 31% with a welfare improvement of 9%. Similarly,
de Ridder (2024) finds that changes in business dynamism induced by rising fixed costs
reduced economic growth by 23% and welfare by 9%. Thus, labor market power in the
R&D sector is sizable and about equally harmful as monopsony in the production sector
and misallocation due to markups.

Faster growth in the counterfactual stems from rising R&D employment and a more
efficient R&D allocation. Column (3) shows that, holding constant aggregate R&D hours,
inducing the efficient allocation improves growth by 0.18 p.p. and welfare by 10.3%. In

19As discussed in Section 2, the competitive demand for R&D workers need not be socially optimal due
to the standard externalities involved in R&D.

25



Table 4: Counterfactuals for Main Calibration

Outcome Baseline No Monopsony

Full Fixed L̃R ∆ L̃R

A. Aggregates
Growth rate 1.50% 1.70% 1.68% 1.51%
∆ Welfare 0.0% 10.6% 10.3% 0.3%
∆ R&D Employment 0.0% 1.9% 0.0% 1.9%
∆ Firm Value 0.0% 13.6% 13.4% 0.2%

B. R&D Employment Share
Top 10% 68.0% 81.2% 81.2% 68.0%
Top 5% 48.6% 64.6% 64.7% 48.6%
Top 2.5% 34.5% 49.5% 49.5% 34.4%

C. Wage Premium
Top 10% 21.4% 14.7% 14.7% 21.4%
Top 5% 45.4% 34.0% 33.9% 45.4%
Top 2.5% 76.6% 61.2% 61.1% 76.6%

Notes: This table reports counterfactuals for offsetting monopsony power through
targeted subsidies. The first and second columns report the calibration and counter-
factual without entry. The third column report the counterfactual holding constant
the number of employed researchers. The last column instead considers a counter-
factual with targeted subsidies, but where the aggregate employment of researchers
conforms with the no monopsony counterfactual. See text for additional details.

turn, I find in column (4) that shifting only aggregate R&D employment boosts growth
by 0.01 p.p. and welfare by 0.3%. Thus, misallocation alone accounts for about 0.18

p.p./0.20 p.p. = 90% of the cost of monopsony in R&D. As shown in Panel B, the model
without monopsony power features significantly more concentrated R&D employment. For
example, the share of R&D expenditure accounted for by the 2.5% largest firms rises from
35% to 50%. Intuitively, rising monopsony power at the top held back their demand
for R&D resources, such that the decentralized equilibrium features more concentration.
Nonetheless, wage premia at the top fall slightly, as shown in Panel C, due to a general rise
in R&D wages in the middle of the R&D employment distribution.

5 Robustness and Discussion

Next, I discuss various robustness checks and investigate potential concerns with the main
analysis. I report the alternative calibrations and counterfactuals in Tables A.1–A.3.

Perfect price discrimination. The model assumes that firms cannot price discrimi-
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nate among their workers, which is necessary to generate monopsony power.20 I relax this
assumption in Appendix C.2.2 by introducing a flexible level of price discrimination. While
higher levels of price discrimination reduce the growth impact of monopsony power, the
effects remain large at intermediate levels. Re-estimating the model assuming an interme-
diate level of price discrimination, I find that offsetting the remaining monopsony power
improves growth by 0.12 p.p. and welfare by 6.3% (see column (6)). Thus, monopsony
continues to be costly in terms of growth and welfare even at intermediate levels of price
discrimination.

Firm entry and entrepreneurship. Another important consideration is firm entry
and entrepreneurship. The exercise of monopsony power increases the value of the firms
and, thus, might incentivize entry. However, using subsidies to incentivize firms to (implic-
itly) ignore their monopsony power increases their value even further as reported in row
four of Table 4. We might thus suspect that this leads to additional entry, which further
boosts innovation. I propose a model extension with entry in Appendix C.2.1 and calibrate
it to match the baseline model under monopsony. Column (7) in Table A.2 then investi-
gates the implication of offsetting monopsony power through subsidies under free entry. I
find that monopsony is even more costly in this scenario. Inducing firms to be price takers
through subsidies increases the number of active firms by 22% and improves growth by
0.48 p.p. and welfare by 20%.

Financing subsidies. The counterfactual implicitly assumes that R&D subsidies are
financed in a manner that does not influence firms’ incentives to innovate, e.g., through
lumpsum taxation of households. Alternatively, one may consider a sophisticated R&D tax
scheme that induces an efficient allocation across firms while breaking even. I investigate
this option in Panel B of Table A.2 and find that it would reduce growth slightly and im-
prove welfare by less than the baseline. Intuitively, the tax scheme requires a large subsidy
for firms conducting a lot of R&D, which requires heavy taxes on average to break even.
These taxes are so large that average R&D employment falls by about 20% in the main cal-
ibration resulting in a reduction of growth by 0.01 p.p.. On net, the scheme boosts welfare
by 6.7% as lower labor disutility outweighs the minor growth deceleration. Interestingly,
such a scheme remains growth improving under free entry. This occurs as free entry yields
a reduction in the number of R&D workers per firm and, thus, less monopsony power even

20This assumption could be tested with inventor-level data by investigating whether expanding firms
change only the wages of marginal workers or also of inframarginal ones. Seegmiller (2023) provides some
evidence along those lines for “high-skilled” workers using the LEHD. Interestingly, he finds that labor
supply elasticities are larger for new recruits rather than incumbent workers, which is the opposite of what
a model with perfect price discrimination would predict if we are willing to assume that new recruits can
be thought of as marginal workers.
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at the top. Consequently, less tax revenue is needed and, thus, fewer disincentives created
on average.

Calibration robustness. I conduct a range of additional robustness exercises around
the model calibration. In the first set of exercises, I re-calibrate the model under alter-
native assumptions about exogenous parameters and the mechanics of bonus payments.
First, I consider a specification where R&D employment and materials are substitutes by
recalibrating the model with θ = 1.5. Second, I consider two alternative incentive pay
schemes. In the first scheme, I assume that the stock compensation distributed depends on
the current rather than expected future wage. In the second scheme, I instead assume that
workers are simply paid a bonus whenever the firm achieves positive stock market returns.
Finally, I also consider the simple case without material inputs and stock compensation.
For these models, I find that offsetting monopsony power improves growth by 14–19 p.p.
and welfare by 7–12%.

In the second set of robustness exercises, I explore the model’s estimated impact of
monopsony power for alternative calibrations in which I vary parameters around their esti-
mated values. As reported in Table A.3, increasing the dispersion of R&D productivity—
either by raising the variance σ2 or autocorrelation ρ of R&D productivity shocks or by
decreasing the relative productivity of unlisted firms Anl/Al—raises the welfare benefits
of tackling monopsony power. These benefits are not driven by a larger growth impact,
however, but by a smaller increase in R&D employment at constant growth impact, i.e.,
larger gains in aggregate R&D productivity. Raising the average R&D supply elasticity
ξ raises the cost of monopsony by raising its impact on growth and R&D employment.
A larger relative R&D supply elasticity ℓ̄ is similarly connected to higher welfare costs of
monopsony power, however, the effects are driven by a smaller expansion of R&D employ-
ment that compensates a slightly lower growth impact in welfare terms. Finally, raising
the labor intensity of R&D predictably, as it raises the welfare costs of monopsony and its
growth impact. Jointly, these robustness checks confirm that the counterfactuals are sen-
sitive to the parameterization, however, they are robust around the calibration matching
the targeted moments.

Sources of monopsony power. Monopsony power is often associated with a lack of
outside options for workers. I provide evidence in favor of this idea in Table B.5 by de-
veloping two measures of limited outside options and documenting their relationship to a
proxy for monopsony power, R&D returns. First, I develop a measure of firm dominance in
its specific inventor labor market, which I define using technology classifications of patents
and calculate as the share of inventors employed by the firm among those patenting in the
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relevant technology classes. Column (5) confirms that this measure is significantly associ-
ated with R&D return, in line with a size-dependent monopsony interpretation. Second, a
lack of outside options can be the product of specialization on the part of inventors such
that firms hiring more specialized inventors tend to have larger R&D returns. I measure
inventor specialization through technology classes. For each inventor, I measure how sim-
ilar the patents are that they worked on as measured by the distance of their technology
classes. I aggregate to the firm level by taking an average over all employed inventors.
Column (6) confirms that firms hiring more specialized inventors indeed have larger R&D
returns—in line with the idea that they have more market power.

6 Conclusion

Politicians, commentators, and academics alike have raised concerns about the macroe-
conomic implications of limited competition in U.S. labor markets. This paper suggests
that these concerns are warranted when it comes to the market for inventors, who possess
highly specialized skills and, thus, potentially limited outside options. The implications
are particularly severe as inventors drive productivity growth, and static inefficiencies from
monopsony power are compounded by innovation’s cumulative nature.

I reach this conclusion in three steps. First, I present a heterogeneous firms endogenous
growth model with monopsony power in the inventor market. The model identifies two
key channels: monopsony power reduces aggregate inventor employment through wage
depression when supply is not perfectly inelastic, and stronger monopsony power among
larger firms creates misallocation by shifting inventors toward less productive employers.
Second, using an instrumental variable strategy to estimate firm-level inventor labor supply
elasticities, I find substantial monopsony power among large firms. While small firms face
competitive conditions, larger employers lose only 13% of R&D employment for a 10% wage
reduction, paying inventors only two-thirds of their marginal product. Third, I calibrate a
quantitative extension of the model to these elasticities, finding that eliminating monopsony
power would increase economic growth by 13% and welfare by 11%.

These results suggest at least two avenues for future research. First, monopsony power
in the corporate sector might affect inventors’ entrepreneurial activity, particularly relevant
given big tech firms’ extensive startup acquisitions. Second, monopsony power might in-
fluence human capital investment by depressing returns and creating differential exposure
across skills, affecting both the distribution of inventors across firms, but also of human
capital across skills.
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Appendix

A Model Appendix

A.1 Baseline Model

A.1.1 Characterization of Decentralized BGP Equilibrium

In the following, I characterize the decentralized equilibrium and subsequently highlight
the implications for a Balanced Growth Path.

Household. Household optimization yields the familiar Euler equation:(
Ct+1

Ct

)σ (
v(LP,t, LR,t)

v(LP,t+1, LR,t+1)

)1−σ

= β ·Rt+1. (A.1)

Along a BGP this gives rise to the standard relationship between (consumption) growth,
interest rate, and discount factor: (1 + g)σ = β ·R.

The supply of production and research labor satisfies

WP,t

Ct
=

(
LP,t
αP

) 1
ϵ

WR,kt

Ct
=

(
LR,t
αR

) 1
ϵ

·

(
ℓ+

1

1 + ξ
+

ξ

1 + ξ
·
∫ 1

0

(
ℓkt
LR,t

)1+ξ

dk

)−1

·

(
ℓ+

(
ℓkt
LR,t

)ξ)
.

As discussed above, ϵ governs the labor supply elasticity at the aggregate level, while ξ
and ℓ̄ govern the firm-specific labor supply elasticities in the R&D sector. In particular, we
have

∂ lnLP,t
∂ lnWP,t

=
∂ lnLR,t
∂ lnWR,t

= ϵ and ∂ ln ℓkt
∂ lnWR,kt

=
1

ξ
· ℓ̄+ (ℓkt/LR,t)

ξ

(ℓkt/LR,t)
ξ

≡ ϵkt,

where WR,t =
∫ 1

0
ℓkt ·WR,kt · dk is the average wage in the R&D sector. Note that ϵkt = ξ if

ℓ̄ = 0, which is the CES case, and ϵkt → ∞ if ξ → 0, which recovers the case where R&D
workers are perfectly mobile across firms and wages are equalized within the R&D sector.
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Production. The first order conditions of the final production firms gives rise to demand
curves for production workers and intermediate goods

WP,t

Ct
=
Yt
Ct

· 1− α

LP,t
and pjt = α ·

(
LP,t · zjt
xjt

)1−α

.

Using this demand curve we can solve the associated firms’ profit maximization problem.
The equilibrium monopoly price pM is constant across firms and given by pM = ψ

α
. All

prices are relative to the final good whose price is normalized to 1. Equilibrium quantities
xkt and profits are

xkt = zkt · LP,t ·
(
ψ

α2

)− 1
1−α

and πkt = π̃t · zkt,

where π̃t = (1− α) · α
1

1−α ·
(
ψ
α

)− α
1−α · LP,t is a common profit shifter.

Resultingly, output and consumption, i.e. output minus production costs, are given by

Yt = Qt · LP,t · α
α

1−α ·
(
α

ψ

) α
1−α

and Ct = Yt −
∫ Qt

0

ψ · xkt · dk = (1− α2) · Yt.

Clearing the production labor market, we have

LP,t = α
1

1+ϵ

P · (1 + α)−
ϵ

1+ϵ .

Innovation. Taking into account the characterization developed above, we can restate
the firm’s innovation problem as

Vt(zkt, Qkt) = max
ℓkt

{
Qkt · π̃t −Wkt · ℓkt +R−1

t+1 · Et [Vt+1(zkt+1, Qkt+1)|zkt]
}

s.t. Qkt+1 =Mkt+1 · zkt+1 +Qkt, Mkt+1 = Qt · Ak · ℓγkt and WR,kt = WR,t(ℓkt).

Along a Balanced Growth Path with π̃t = π̃ and Rt+1 = R one can verify that

Vt(zkt, Qkt)

Qt

= ṽ(zkt) + V · qkt,

where I denote values normalized by Qt in lower case, the value of quality-adjusted inter-
mediates is V = R/(R− 1) · π̃ and the value of innovation capability ṽ(zkt) is the solution
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to

ṽ(zkt) =max
ℓkt

{
1

R
· V ·mkt+1 · E[zkt+1|zkt]− ℓkt · wR,kt +

1 + g

R
· Et[ṽ(zkt+1)|zkt]

}
s.t. mkt+1 = Ak · ℓγkt and wR,kt = WR(ℓkt).

It is well known that there is a unique solution to this value function iteration problem.
Furthermore, note that the choice of ℓkt is independent of the firm value such that the
associated first order conditions are given by

ℓkt =

(
γ · Ak · V · Et[zkt+1|zkt]
Wkt · (1 + 1/ϵkt) ·R

) 1
1−γ

.

Derivations for the firm’s value function maximization problem. The baseline
problem is given by

Vt(zkt, Qkt) = max
ℓkt

{
Qkt · π̃t −Wkt · ℓkt +R−1

t+1 · Et [Vt+1(zkt+1, Qkt+1)|zkt]
}

s.t. Qkt+1 =Mkt+1 · zkt+1 +Qkt, Mkt+1 = Qt · Ak · ℓγkt and WR,kt = WR,t(ℓkt).

One can guess and verify that the firm’s value function in equilibrium takes the form

Vt(zkt, Qkt) = VZ,t(zkt) + VQ,t ·Qkt, where VQ,t = π̃t +
∑
s=1

(∏
k=1,s

R−1
t+k

)
π̃t+s

and VZ,t(zkt) = max
ℓkt

{
−WR,kt · ℓkt +R−1

t+1 · Et [Mkt+1zkt+1 · VQ,t+1 + VZ,t+1(zkt+1)|zkt]
}

s.t. WR,kt = Wt(ℓkt) and Mkt+1 = Qt · Ak · ℓγkt

Note that the choice of R&D input is independent of the evolution of VZ,t(zkt) and,
thus, we can solve for optimal private R&D input as

ℓkt =

(
γ ·Qt · Ak · VQ,t+1

WR,kt · (1 + 1/ϵR,kt) ·Rt+1

) 1
1−γ

.

This demand function together with labor supply can be used to clear the labor market
for R&D workers.
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A.1.2 Characterization of the Planner Equilibrium

Static optimality conditions. Planner output and consumption:

Ỹt = Qt · LP,t ·
(
ψ

α

)− α
1−α

and Ct = (1− α)Yt

Planner production labor supply:

LP,t = α
1

1+ϵ

P

Derivations for the social planners innovation problem. Imposing the static equi-
librium conditions derived above, we can restate the planner problem for R&D workers
as

max Et
∞∑
t=0

βt · (Ct · v(LP , LR,t))
1−σ − 1

1− σ

with v(LP , LR,t) = exp
(
− ϵ

1 + ϵ

(
1 + αR

(
LR,t
αR

) 1+ϵ
ϵ

))
,

LR,t =

(
ℓ+

1

1 + ξ

)−1

·

(∫ 1

0

ℓkt ·

(
ℓ+

1

1 + ξ

(
ℓkt
LR,t

)ξ)
dk

)
,

Ct = Qt · LP · (1− α) ·
(
ψ

α

)− α
1−α

and Qt+1 = Qt

(∫ 1

0

Ak · ℓγkt · zkt+1 · dk + 1

)
subject to the law of motion for firm-level R&D productivities. I denote the growth-rate
of aggregate technology as gt+1 =

∫ 1

0
Ak · ℓγkt · zkt+1 · dk.

The first-order condition for R&D labor is given by

γ ·Qt ·Ak · ℓγ−1
kt ·Et[zkt+1|zkt] ·

λQt+1

Ct · λCt
=

(
LR,t
αR

) 1
ϵ

· ℓ̄+ (ℓk,t/LR,t)
ξ

ℓ̄+ (1 + ξ)−1 + ξ
1+ξ

·
∫ 1

0
(ℓkt/LR,t)1+ξ · dk

,

where the RHS is the shadow price of hiring an R&D worker, which coincides in formula
with the decentralized equilibrium.

We can solve for the marginal value of Qt as

λQt = λCt · Ct+1

Qt+1

(
1 +

∑
s=1,··· ,∞

( ∏
k=1,...,s

(1 + gCt+k)

)
·
λCt+s
λCt

)
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Define the shadow interest rate as R̃t+1 = λCt+1/λ
C
t and we can simplify further

Qt · ṼQ,t+1 ≡
λQt+1 ·Qt

Ct · λCt
=

1

R̃t+1

(
1 +

∑
s=1,··· ,∞

( ∏
k=1,...,s

1 + gt+1+k

R̃t+1+k

))

Defining the shadow wage appropriately we can solve for the first order conditions as

ℓkt =

(
γ ·Qt · Ak · Et[zkt+1|zkt] · ṼQ,t+1 · Ct

W̃R,kt

) 1
1−γ

A.1.3 Proofs and Additional Results

Proof of Proposition 1. Following the results developed above, the labor supply curve is
given by

Wkt = Ct ·
(
LR,t
αR

) 1
ϵ

·

(
ℓ+

1

1 + ξ
+

ξ

1 + ξ
·
∫ 1

0

(
ℓkt
LR,t

)1+ξ

dk

)−1

·

(
ℓ+

(
ℓkt
LR,t

)ξ)

It follows directly, that any shift in R&D employment due to a change in the R&D
subsidy rate (or any other shift in the demand for, but not supply of, R&D workers) yields
the shift in R&D wages described in the proposition. The remaining observations result
directly from the formula.

Proof of Proposition 2. The result follows directly from the derivations for the decentral-
ized and planner equilibria above. First, one can confirm that with ℓ̄ = 0, the first order
conditions are perfectly proportional, i.e., the relative allocation coincides. That also im-
plies that the allocation of R&D workers is efficient if their supply is perfectly inelastic.
Second, imposing R&D subsidies that depend on the firm type and perfectly offset the wage
elasticity yield the efficient relative and total allocation. As is standard, output subsidies
can be used to solve inefficiencies in the production sector. Finally, it is straight-forward
to confirm that monopsony power reduces the relative demand for R&D workers among
larger firms as long as ℓ̄ > 0.

Proposition 1 highlights that monopsony power materializes in form of a finite labor
supply elasticity in response to firm-specific demand shocks. Proposition 4 further empha-
sizes the necessity of using firm-level shocks for identification. In particular, the equilibrium
response of wages to aggregate shocks, such as an economy-wide R&D subsidy, is indepen-
dent of firms’ market power and depends only on the aggregate labor supply elasticity for
R&D workers. Thus, it is impossible to estimate the extent of monopsony power in this
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model when considering aggregate shocks. Direct estimates of the labor supply elasticity
can only be recovered with firm-specific inventor demand shocks.

Proposition 4. The elasticity of firms’ inventor wages with respect to their employment
as induced by a small change in the general R&D subsidy rate 1− τt is given by

∂ lnWR,kt

∂ ln ℓkt

∣∣∣∣∣
∆τt

=
1

ϵ
, (A.2)

which is constant across firms regardless of their monopsony power. Furthermore, under
such a policy change, the relative allocation of R&D workers ℓkt/LR,t remains constant.

Proof of Proposition 4. It is straight-forward to show that starting with an equilibrium,
the first order conditions for the firm continue to hold with a constant ℓkt/LR when LR

rises with (1− τ) such that
(
L

1
ϵ
R · (1− τ)

) 1
1−γ ·L−1

R remains constant. Resultingly, the wage
elasticity induced by such a shock is 1/ϵ.

Proof of Proposition 3. The first statement can be derived directly from the firm’s first
order conditions. The second statement follows from the fact that the average product is
the R&D return times the R&D wage.

A.2 Quantitative Model

This Appendix introduces the full quantitative model and derives the key Balanced Growth
Path equations.

A.2.1 Setup

There are two types of firms: listed and non-listed. The firms operate identically, but differ
in their average productivity as described above.

Final Production. A representative firm hires production labor LP,t at wage WP,t and
buys intermediate inputs {xjt}j∈[0,Qt] at price pjt to produce output Yt. The firm solves

max
LP,t,{xjt}j∈Qt

Yt −WP,t · LP,t −
∫
Qt

pjt · xjtdj s.t. Yt = L1−α
P,t

∫
Qt

z1−αjt · xαjtdj, (A.3)

where zjt is a demand-shifter. Production worker and intermediate good demand is
given by

WP,t

Ct
=
Yt
Ct

· 1− α

LP,t
and pjt = α ·

(
LP,t · zjt
xjt

)1−α

. (A.4)
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Intermediate good producers. There is a unit mass of firms owning the exclusive
production rights to Intermediate goods, which can be produced with constant unit cost ψ
in terms of the final good. For each intermediate good, the proprietor solves

max
xjt

pjt · xjt − ψ · xjt (A.5)

subject to the product demand curve detailed above. Profit maximizing monopoly price
pM is constant across firms and given by pM = ψ

α
. All prices are relative to the final good

whose price is normalized to 1. I set ψ = α when taking the model to the data.
Equilibrium quantities xkt are given by

xkt = zkt · LP,t ·
(
ψ

α2

)− 1
1−α

(A.6)

Equilibrium profits are given by

πkt = π̃t · zkt with π̃t = (1− α) · α
1

1−α ·
(
ψ

α

)− α
1−α

· LP,t. (A.7)

I denote the mass of available intermediate goods by Qt and their average quality level
as zt = 1

Qt

∫ 1

0

∫
Qkt

zkt · dz · dk, where Qkt is the mass of intermediate goods owned by firm
k. I will denote values normalized by Qt in lower case.

The final output can be used for three purposes: consumption, production of interme-
diate goods and material in innovation, Rkt. Market clearing thus requires

Yt = Ct +

∫
Qt

ψ · xjt · dj +
∫ 1

0

Rkt · dk. (A.8)

In a decentralized equilibrium, output net of production cost for intermediate goods is

Yt − It = Qt · zt · LP,t · (1− α2) · α
α

1−α ·
(
α

ψ

) α
1−α

. (A.9)

Workers and Labor Markets. A representative household owns all firms and supply
labor in form of production workers LP,t and researchers {ℓkt}k∈[0,1]. Wage income from
production workers, WP,t, and researchers, WR,kt, bond holdings Rt ·Bt, and firm ownership
Πt are either consumed Ct or invested in a riskless bond Bt+1. Flow utility depends on labor
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supply and consumption, and the future is discounted at rate β. The household solves

max
∞∑
t=0

βt

(
logCt −

ϵ

1 + ϵ

(
αP

(
LP,t
αP

) 1+ϵ
ϵ

+ αR

(
LR,t
αR

) 1+ϵ
ϵ

))

s.t. LR,t =

(
ℓ+

1

1 + ξ

)−1

·

(∫ 1

0

ℓkt ·

(
ℓ+

1

1 + ξ

(
ℓkt
LR,t

)ξ)
dk

)

Bt+1 + Ct = Rt · Bt +WP,t · LP,t +
∫ 1

0

WR,kt · ℓktdk +Πt

(A.10)

Household optimization yields standard Euler equation:

Ct+1

Ct
= β ·Rt+1. (A.11)

Supply of production labor satisfies

WP,t

Ct
=

(
LP,t
αP

) 1
ϵ

. (A.12)

Supply for research labor satisfies

WR,kt

Ct
=

(
LR,t
αR

) 1
ϵ

·

(
ℓ+

1

1 + ξ
+

ξ

1 + ξ
·
∫ 1

0

(
ℓkt
LR,t

)1+ξ

dk

)−1

·

(
ℓ+

(
ℓkt
LR,t

)ξ)
(A.13)

Innovation. Intermediate goods firms employ R&D resouces to produce new blueprints
in the subsequent period, which are added to their existing stock. A fraction ζ of firms is
“listed” with potentially different levels of R&D productivity across listed and non-listed
firms. Otherwise, both firm types behave identically.

Firms hire R&D workers ℓkt and use materials Rkt to produce Mkt+1 new products in
the next period according to production function

Mkt+1 = Qt · Ak ·

(
α

1
ν
L (ℓkt)

ν−1
ν + (1− αL)

1
ν

(
Rkt

Qt

) ν−1
ν

) ν
ν−1

·γ

. (A.14)

Listed and non-listed firms differ exclusively in their level of Ak. Wages are determined in
the labor market as detailed above. Materials are produced 1-for-1 from the final output
and priced at cost.

The quality-adjusted stock of blueprints Qkt evolves according to

Qkt+1 =Mkt+1 · zkt+1 +QN
kt. (A.15)
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The demand-shifter zkt+1 is determined at the point of invention and is identical to all
products that were invented by the same firm in the same period.21 It follows a persistent,
stochastic process:

ln zkt+1 = (1− ρ) · µ+ ρ · ln zkt + σ · νkt+1 with νkt+1
i.i.d.∼ N(0, 1). (A.16)

The firms’ optimization problem is thus given by

Vkt(zkt,Qkt) = max
ℓkt

{
Qkt · π̃t −WR,kt · ℓkt −Rkt +

1

Rt+1

· Et [Vkt+1(zkt+1,Qkt+1)|zkt]
}

s.t. Mkt+1 = Qt · Ak ·

(
α

1
ν
L (ℓkt)

ν−1
ν + (1− αL)

1
ν

(
Rkt

Qt

) ν−1
ν

) ν
ν−1

·γ

,

WR,kt = Wt(ℓkt), and Qkt+1 =Mkt+1 · zkt+1 +Qkt.

Lemma 1. The firm’s value function can be decomposed as Vkt(zkt,Qkt) = Vt(zkt, Ak) +

V Q
t · Qkt, where the V Q

t is the solution to

V Q
t = π̃t +

1

Rt+1

· V Q
t+1 with π̃t ≡ (1− α) · α

1
1−α ·

(
ψ

α

)− α
1−α

· LP,t (A.17)

and Vkt(zkt) is the solution to

Vt(zkt, Ak) = max
ℓkt,Rkt

{
−Wkt · ℓkt −Rkt

+
1

Rt+1

Et
[
Mkt+1 · zkt+1 · V Q

t+1 + Vt+1(zkt+1, Ak)
∣∣zkt]}. (A.18)

The firm’s innovation choice problem is thus given by

max
ℓkt,Rkt

R−1
t+1 · Et[zkt+1|zkt] ·Mkt+1 · V Q

t+1 −WR,kt · ℓkt −Rkt s.t. (A.13) and (A.14).

The aggregate state of technology evolves according to

Qt+1 = Qt +

∫ 1

0

Mkt+1 · zkt+1 · dk. (A.19)
21Alternatively, one could assume that firm-level demand for all products fluctuates concurrently. Such

an assumption will affect the precise algebra of the model, but not its qualitative or quantitative properties.
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A.2.2 Simulation and Quantification

I calibrate the model through moment matching as discussed in the main text. For a given
set of parameters I first solve the model along the balance growth path and then simulate
a listed firms for 100,000 periods.I construct all moments exactly as in the data and run
the same regressions. To account for potential biases due to share-based compensation, I
follow the third example in Appendix Section C.1 to construct a set of wages adjusting
for stock-based compensation. Using these wages, I then calculate R&D expenditure per
worker as I do in the data. I present calibrations and counterfactuals for alternative models
of stock-based compensation in Online Appendix A.3. I then calculate a weighted distance
of target and model moments, which I minimize using standard solvers.

Using the calibrated model, I construct counterfactuals in which monoposony power is
overcome through targeted subsidies. In my baseline, I consider the case where subsidies are
financed through lumpsum taxation. Naturally, such a scheme will not only yield a more
efficient allocation of researchers across firms, but will also improve the aggregate incentives
for R&D and, thus, yield an expansion of aggregate R&D employment. To disentangle the
relative and absolute effects, I consider two additional counterfactuals. In the first, I fix
the number of researchers employed L̃R =

∫ 1

0
ℓkt · dk through a general taxation of research

activity. In the second, I instead do not implement any size-dependent R&D policy and
only implement the change in L̃R between the baseline monopsony and no monopsony cases
through a general subsidy of research activity.

A.3 Calibration and Counterfactuals for Alternative Models
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Table A.1: Alternative Calibrations

A. Parameters (1) (2) (3) (4) (5) (6)

Parameter Symbol Simple Main θ =
1.5

Bonus
II

Bonus
IV

αD =
0.5

A.1. External calibration
Discount factor β 0.96 0.96 0.96 0.96 0.96 0.96
Labor supply elasticity ϵ 0.50 0.50 0.50 0.50 0.50 0.50
R&D scale elasticity γ 0.50 0.50 0.50 0.50 0.50 0.50
Share of non-listed firms ζ 0.05 0.05 0.05 0.05 0.05 0.05
Markup parameter α 0.80 0.80 0.80 0.80 0.80 0.80
Elas. of substitution in R&D θ 0.50 0.50 1.50 0.50 0.50 0.50

A.2. Internal calibration
Labor disutility production αP 0.205 0.205 0.205 0.205 0.205 0.205
Labor disutility R&D αR 0.097 0.121 0.089 0.118 0.281 0.123
Labor weight in R&D αL 1.000 0.968 0.594 0.968 0.969 0.968
R&D productivity listed Al 0.262 0.261 0.331 0.263 0.220 0.263
R&D productivity unlisted Anl 0.013 0.014 0.024 0.014 0.013 0.014
Std. dev. R&D prod. shocks σ 0.266 0.238 0.226 0.241 0.218 0.241
Autocorr. R&D prod. shocks ρ 0.979 0.985 0.979 0.984 0.994 0.984
Avg. R&D supply elasticity ξ 2.008 1.922 1.908 1.963 1.366 1.963
Rel. R&D supply elasticity ℓ̄ 106.7 57.3 153.8 68.3 2.6 38.0

B. Moments (1) (2) (3) (4) (5) (6)

Moment Data Simple Main θ =
1.5

Bonus
II

Bonus
IV

αD =
0.5

Growth rate 0.015 0.015 0.015 0.015 0.015 0.015 0.015
Relative R&D listed vs non-listed 35 35 35 35 35 35 35
Std. dev. of R&D growth-rate 0.316 0.316 0.316 0.316 0.316 0.316 0.316
Autocorr. of R&D 0.922 0.968 0.923 0.904 0.922 1.092 0.924
Wage elasticity 0.437 0.437 0.436 0.437 0.437 0.434 0.435
Wage elas. for small R&D 0 0.197 0.201 0.184 0.205 0.198 0.202
∆ wage elas. large R&D 0.746 0.746 0.747 0.746 0.746 0.746 0.746
Labor share in R&D 0.79 1 0.79 0.79 0.79 0.79 0.79
R&D employment 0.047 0.047 0.047 0.047 0.047 0.047 0.047
Production employment 0.286 0.286 0.286 0.286 0.286 0.286 0.286

Notes: This table reports calibrated parameter values and targeted moments in the data and model for alternative
model specifications. Panel A reports parameter values distinguishing between externally calibrated parameters
in Panel A.1 and internally calibrated parameters in Panel A.2. Panel B reports the targeted moments from the
data and the model values from the calibration. In the simple model, R&D is produced only with labor and there
is no stock-based compensation. In Bonus II, stock-based compensation is determined based on expected wages in
the next period rather than current wages. In Bonus IV, workers receive a bonus whenever the firm earns positive
stock returns. The final column reports results for a model with partial price discrimination among workers. See
text for additional details.
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Table A.2: Counterfactuals for Alternative Calibrations

Outcome (1) (2) (3) (4) (5) (6) (7)
Simple Main θ = 1.5 Bonus II Bonus IV αD = 0.5 Entry

A. Lump-sum Taxation
∆ Growth Rate 0.21 p.p. 0.20 p.p. 0.14 p.p. 0.20 p.p. 0.19 p.p. 0.12 p.p. 0.48 p.p.
∆ Welfare 10.5% 10.6% 7.1% 10.4% 12.3% 6.3% 19.8%
∆ R&D Employment 1.7% 1.9% 2.7% 2.0% 7.0% 0.4% 8.4%
∆ Firm Value 15.6% 13.6% 14.3% 13.8% 9.0% 10.2% -0.0%
Avg. R&D Subsidy 48.8% 44.0% 35.3% 44.0% 44.9% 45.3% 43.2%
∆ Firms 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 21.8%

B. Budget-neutral R&D Taxation and Subsidies
∆ Growth Rate 0.00 p.p. -0.01 p.p. -0.04 p.p. -0.01 p.p. -0.03 p.p. -0.09 p.p. 0.20 p.p.
∆ Welfare 6.0% 6.7% 2.7% 6.6% 8.8% 2.7% 13.5%
∆ R&D Employment -21.1% -20.4% -13.2% -20.3% -17.7% -22.4% -15.5%
∆ Firm Value 8.9% 10.4% 11.9% 10.6% 5.6% 6.7% -0.0%
Avg. R&D Subsidy 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% -0.0%
∆ Firms 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 18.1%

Notes: This table reports counterfactuals for offsetting monopsony power through targeted subsidies. Each column reports
the change in key outcomes for a different calibration. In the simple model, R&D is produced only with labor and there is
no stock-based compensation. In θ = 1.5, I assume that labor and material are substitutes instead of complements in R&D.
In Bonus II, stock-based compensation is determined based on expected wages in the next period rather than current wages.
In Bonus IV, workers receive a bonus whenever the firm earns positive stock returns. The sixth column reports results for a
model with partial price discrimination among workers. The last column reports counterfactuals for a model with free entry.
See text and appendix for additional details.
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Table A.3: Key Moments for Alternative Parameterizations

Scenario Wage
elasticity

Wage elas.
for large

firms
∆ Growth ∆ R&D

Empl. ∆ Welfare

Baseline calibration 0.436 0.747 0.20 p.p. 1.9% 10.6%
Lower variance of R&D shocks σ 0.633 0.623 0.20 p.p. 3.0% 7.7%
Higher variance of R&D shocks σ 0.313 0.736 0.20 p.p. 1.5% 13.2%
Lower persistence of R&D shocks ρ 0.533 0.684 0.20 p.p. 2.4% 9.0%
Higher persistence of R&D shocks ρ 0.306 0.784 0.20 p.p. 1.5% 13.0%
Lower relative productivity of unlisted firms Anl/Al 0.491 0.768 0.21 p.p. 1.8% 11.1%
Higher relative productivity of unlisted firms Anl/Al 0.390 0.720 0.18 p.p. 2.4% 10.3%
Lower avg. R&D supply elasticity ξ 0.235 0.429 0.14 p.p. 1.9% 9.9%
Higher avg. R&D supply elasticity ξ 0.685 1.031 0.24 p.p. 3.8% 11.4%
Lower rel. R&D supply elasticity ℓ̄ 0.541 0.782 0.21 p.p. 2.3% 10.6%
Higher rel. R&D supply elasticity ℓ̄ 0.366 0.703 0.19 p.p. 1.8% 10.7%
Lower R&D supply disutility αR 0.436 0.747 0.20 p.p. 1.9% 10.6%
Higher R&D supply disutility αR 0.436 0.747 0.20 p.p. 1.9% 10.6%
Lower labor intensity in R&D αL 0.430 0.737 0.20 p.p. 2.0% 10.5%
Higher labor intensity in R&D αL 0.442 0.757 0.20 p.p. 1.8% 10.7%

Notes: This table reports selected moments and statistics for alternative parameterizations as a sensitivity check. Each row reports alternative
values for calibrations changing the indicated parameter by +/- 25% of its value in the main calibration, except for the autocorrelation, where
parameterizations +/- 0.005 of the main calibration are reported, and labor intensity of R&D, where parameterizations +/- 0.01 of the main
calibration are reported. See text and appendix for additional details.

47



B Empirical Appendix

B.1 Variable Construction

R&D Employment. I calcualte R&D employment based on inventors listed on firms’
granted patents. I link patents to firms in Compustat using the crosswalk in Kogan et al.
(2017) and assign each firm a share of a given inventor in each year based on the share of
patents assigned to the firm. I then record total inventor in the year prior to the patent
application to reflect the time at which they worked on a given application. Finally, I
aggregate to the firm level. In my baseline, I use the inventors identified by USPTO’s
Patentsview and confirm robustness with those identified by Kaltenberg et al. (2021).

Labor Market Dominance. I construct a measure of labor market dominance in the
market for inventors to investigate the potential connection between dominance and R&D
returns. For each new patent in a firm’s portfolio I calculate the share of potential inventors
that are working with the firm, where I classify someone as a potential inventor if they work
on patents with the identical technology classification. I then average this measure out over
all of the firm’s patent to get a measure of overall inventor market dominance.

Inventor Specialization. I contruct a firm-level proxy for it by aggregating an inventor-
level measure of specialization. For an individual inventor, I construct a specialization
measure based on the cosine distance between the technology classifications of patents that
the inventor worked on over the period. I then average this measure to the firm-level by
taking a patent-weighted average over inventors associated with the firm.

R&D Returns. I construct R&D returns as the ratio of patent valuations estimated in
Kogan et al. (2017) to R&D expenditure over a 5-year window. I focus on observations with
at least 50 underlying patents. See Lehr (2024) for a further discussion of the meassure.

Stock-market returns. I construct annual stock market returns from monthly returns
reported in CRSP. I then construct excess returns using the S&P500 index returns from
the same data source. When constructing returns, I line up the month with the fiscal year
of the company.
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B.2 Robustness for Elasticity Estimates

Figure B.1 reports estimates for the average inverse labor supply elasticity (Panel A) as
well as the interaction regression (Panel B and C) for different time horizons. The average
estimates are decreasing over time starting at about 0.75 and stabilitizing around 0.25 in the
long-run. The evidence from the interaction regression highlights that the overall decline
in the estimate is driven by below median R&D employment firms, while the estimate for
the gap between above and below median R&D employment firms is relatively stable. The
estimate for below median R&D employment firm is only significant in t = 1 and close to
zero in subsequent periods. This finding motivates the focus on the t = 3 estimate in the
main text.

Figure B.1: Elasticity Estimates Over Time
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Additional robustness exercises are reported in Tables B.1 - B.4. Table B.1 adds prior
growth rates for R&D employment and wage as controls as in Seegmiller (2023). Table B.2
uses alternative measures of inventor employment. Table B.3 uses TFP growth in t − 1

constructed from the TFP estimates in Imrohoroglu and Tuzel (2014) as an alternative in-
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strument for R&D employment growth. Finally, B.4 add inventor productivity—measured
by the average patents per year of employed inventors—as a control variable. Across ro-
bustness exercises I find estimates highly consistent with the main estimates.

Table B.1: Inverse R&D Labor Supply Elasticity Estimates — Controls

(1) (2) (3)
R&D Wage Growth

R&D Employment Growth 0.434*** -0.040 -0.023
(0.162) (0.125) (0.147)

— × Above Median R&D Employment 0.711***
(0.186)

— × Above Median R&D Return 0.676***
(0.161)

Controls ✓ ✓ ✓
First stage F stat. (Main) 72 43 38
First stage F stat. (Inter.) – 31 76
Observations 12,707 12,707 12,707

Note: R&D employment and wage growth are log differences between t − 2 and t + 3. Controls include
lagged inventor wage and employment growth. R&D employment growth is instrumented for with stock
market returns in t − 1. All regressions control for NAICS3 × year fixed effects. F statistics reported are
based on Sanderson and Windmeijer (2015). Standard errors are clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

B.3 Additional Empirical Results
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Table B.2: Inverse R&D Labor Supply Elasticity Estimates — Inventor Robustness

(1) (2) (3) (4)
A. Baseline R&D Wage Growth
R&D Employment Growth 0.437*** 0.480*** 0.436*** 0.523***

(0.150) (0.157) (0.150) (0.175)

First stage F stat. (Main) 67 69 62 53
First stage F stat. (Inter.) – – – –
Observations 12,772 12,710 12,772 12,563

B. Interaction with Size R&D Wage Growth
R&D Employment Growth -0.039 -0.059 -0.046 -0.087

(0.120) (0.122) (0.121) (0.132)
— × Above Median R&D Employment 0.746*** 0.774*** 0.749*** 0.771***

(0.201) (0.199) (0.201) (0.201)

First stage F stat. (Main) 39 42 37 35
First stage F stat. (Inter.) 30 33 29 31
Observations 12,772 12,710 12,772 12,563

B. Interaction with Return R&D Wage Growth
R&D Employment Growth 0.012 0.026 -0.000 -0.007

(0.158) (0.167) (0.159) (0.194)
— × Above Median R&D Return 0.647*** 0.688*** 0.652*** 0.740***

(0.186) (0.198) (0.188) (0.228)

Inventor measure Baseline US only FTE Verified
First stage F stat. (Main) 31 32 29 25
First stage F stat. (Inter.) 95 94 93 72
Observations 12,772 12,710 12,772 12,563

Note: R&D employment and wage growth are log differences between t − 2 and t + 3. R&D employment growth is instrumented
for with stock market returns in t − 1. All regressions control for NAICS3 × year fixed effects. F statistics reported are based on
Sanderson and Windmeijer (2015). Standard errors are clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table B.3: Inverse R&D Labor Supply Elasticity Estimates — Alternative Instru-
ment

(1) (2) (3)
R&D Wage Growth

R&D Employment Growth 0.571* 0.023 0.225
(0.337) (0.218) (0.351)

— × Above Median R&D Employment 0.953***
(0.323)

— × Above Median R&D Return 0.628***
(0.202)

Controls
First stage F stat. (Main) 16 9 8
First stage F stat. (Inter.) – 11 31
Observations 10,239 10,239 10,239

Note: R&D employment and wage growth are log differences between t−2 and t+3. R&D employment growth is
instrumented for with TFP growth. All regressions control for NAICS3 × year fixed effects. F statistics reported
are based on Sanderson and Windmeijer (2015). Standard errors are clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

Table B.4: Inverse R&D Labor Supply Elasticity Estimates — Productivity

(1) (2) (3)
R&D Wage Growth

R&D Employment Growth 0.447*** -0.037 0.010
(0.145) (0.126) (0.160)

— × Above Median R&D Employment 0.756***
(0.206)

— × Above Median R&D Return 0.658***
(0.197)

Inventor Productivity Growth 0.505*** 0.375*** 0.445***
(0.100) (0.076) (0.091)

First stage F stat. (Main) 70 41 33
First stage F stat. (Inter.) – 30 100
Observations 12,518 12,518 12,518

Note: R&D employment and wage growth are log differences between t− 2 and t+3. Inventor productivity
is the average patents per year produced from inventors employed by the firm. R&D employment growth is
instrumented for with stock market returns in t− 1. All regressions control for NAICS3 × year fixed effects.
F statistics reported are based on Sanderson and Windmeijer (2015). Standard errors are clustered at the
NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table B.5: R&D Returns Correlate with R&D Employment

(1) (2) (3) (4) (5) (6)
R&D Returns

R&D Employment 0.295*** 0.276***
(0.036) (0.054)

Employment 0.019
(0.031)

Lagged Excess Returns 0.215***
(0.023)

Lagged TFP Growth 0.219***
(0.055)

Firm R&D Dominance 0.161***
(0.039)

Inventor Specialization 0.178**
(0.079)

Within R-sq. 0.13 0.13 0.01 0.00 0.02 0.00
Observations 11,062 11,050 9,296 7,587 9,897 11,048

Note: All variables in logs exce[t for excess returns and TFP growth. All regressions control for NAICS3 × year fixed
effects. Standard errors are clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Online Appendix
Not for publication

C Online Model Appendix

C.1 Stock-based Compensation

R&D workers are often compensated through stocks. In 2019, the NSF reported that around
12% of total labor costs in R&D came through stock-based compensation. In the following, I
highlight how this compensation structure can lead to a bias when estimating labor supply
elasticities using stock market returns rkt as an instrument using three examples. The
examples highlight that alternative mechanisms for stock-based compensation lead to no,
upwards, or downwards bias when estimating the (inverse) labor supply elasticity. Thus, the
presence of stock-based compensation alone does not necessarily imply biased estimation.

I consider the following setup: Total compensation Wkt is given by

Wkt = WC,kt + skt · Vkt, (C.1)

where WC,kt is the cash component of wages, skt denotes shares and Vkt the value of a share.
I assume that the cash component is fully flexible and reflects any potential monopsony
power, while considering alternative specifications for the stock-based compensation. Log
changes in compensation can be approximated as

∆ lnWkt ≈ sC,kt ·∆ lnWC,kt + (1− sC,kt) · (∆ ln skt +∆ lnVkt) .

Throughout, I am interested in estimating the elasticity of R&D wages with respect
to R&D employment using stock market returns, rkt = ∆ lnVkt, as an instrument. The
IV-estimator β̂IV and unbiased estimate β are given by

β̂IV =
Ĉov(rkt,∆ lnWkt)

Ĉov(rkt,∆ ln ℓkt)
and β =

Cov(rkt,∆ lnWC,kt)

Cov(rkt,∆ ln ℓkt)
,

where I assume instrument relevance, i.e. Cov(rkt,∆ ln ℓkt) > 0. Finally, firm’s stock
returns are assumed i.i.d. with an expected value of 0 and only total compensation is
observed.
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Example 1: Fixed share of compensation. Suppose workers receive a fixed share
s of their compensation in stocks, while the remainder, WC,kt is paid out in cash. Total
compensation is thusWkt = WC,kt+s·Wkt. Simple algebra reveals then thatWkt = (1−s)−1·
WC,kt such that overall compensation moves 1-for-1 with cash compensation. Resultingly,
log changes in cash and overall compensation coincide, i.e. ∆ lnWkt = ∆ lnWC,kt, and the
IV estimator is unbiased.

Example 2: Fixed number of shares. Suppose the number of shares skt is determined
one period in advance such that the expected share of compensation through stocks is s:

s =
skt · Et−1[Vkt]

skt · Et−1[Vkt] + Et−1[WC,kt]
.

Since stock returns are i.i.d, they are orthogonal to the predetermined changes in share
∆ ln skt. Resultingly, we have

Cov(rkt,∆ lnWkt) = sC · Cov(rkt,∆ lnWC,kt) + (1− sC) · V ar(rkt)

Hence, even if the cash wage is independent of the stock returns, we will see a positive
covariance of overall wage growth to stock returns. In other words, as long as cash wages
respond less than 1-for-1 with stock returns, using the latter as an instrument will lead to
a downwards bias of the estimated labor supply elasticity and an upwards bias of β:

β̂IV = sC · β + (1− sC) ·
V ar(rkt)

Cov(rkt,∆ ln ℓkt)
.

Example 3: Fixed value. Suppose workers are promised a fixed compensation in terms
of stock values, e.g. 20k USD in form of the firm’s shares, such that

s =
Et−1[skt · Vkt]

Et−1[skt · Vkt] + Et−1[WC,kt]
. (C.2)

Since ∆ ln skt +∆ lnVkt is predetermined, it is independent of the stock return. Then, we
have that the estimated IV coefficient is given by

β̂IV = sC · β,

which is smaller than the true coefficient. Thus, using stock market returns leads to a
downwards biased estimated for β and an upwards biased labor supply elasticity in this
case.
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C.2 Extensions

C.2.1 The Cost of Monopsony under Free Entry

This Appendix discusses the quantitative implication of monopsony model when the num-
ber of firms is determined by a free entry condition. I briefly discuss how I introduce free
entry into the model and how I construct counterfactuals before presenting the associated
estimates for the cost of monopsony power.

Model. I introduce entry by allowing for the posibility that the mass of firms, which I
denote by Mt, is determined by a free entry condition stating that the expected value of a
firm without existing patents has to be equal to entry costs, which I model as Qt ·ϕE ·MφE

t .
Resultingly, the free entry condition is given by

E[Vit/Qt] = ϕE · MφE
t .

Larger values of φE make Mt less responsive—indeed φE → ∞ yields the case of a fixed
mass of firms in the limit. To preserve comparability with the model, which assumes a
fixed mass of firms Mt = 1, I assume that entry costs are paid in the past rather than
affecting resource constraints moving forward. Note also that the equilibrium number of
firms is constant along the BGP.

I parametrize ϕE to ensure that Mt = 1 in baseline. I then consider two counterfactuals.
In the first counterfactual, I assume that the planner implements a targeted subsidy scheme
that perfectly offsets firms’ disincentive to hiring due to monopsony power. As discussed
below, this intervention entails a substantial subsidy on average, which raises firm values
and, thus, the incentives to enter. I, thus, consider a second counterfactual in which I
implement a non-targeted tax on R&D expenditure that fully finances the subsidy scheme.
In both scenarios I set φE = 0 to explore the full “free-entry” case without crowding out,
which could be understood as the other extreme compared the the φE → ∞ that implicitly
underpins the baseline.

Counterfactuals. Column (7) of Table A.2 reports the aggregate results for the counter-
factuals with the baseline counterfactual reported in column (2) for reference. Free entry
increases the welfare costs of monopsony power significantly. This effect is driven by an
expansion of the active firms and R&D employment in both cases. Both are less pronouced
in the scenario with budget neutral taxation and subsidies. The welfare gains from com-
bating monopsony power increase by about factor 5 in the first scenario and turn decidedly
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positive in the second one. The intuition for the latter is that entry pushes down the aver-
age number of R&D workers per firm, which lowers wage elasticities, especially for larger
firms that require high subsidies. Resultingly, the required general tax on R&D to recover
the subsidy payments are lower, which reduces their drag on total R&D employment.

C.2.2 Monopsony and Price Discrimination

The inability of firms to have discriminatory wages among its employees is crucial to gen-
erating monopsony power. This section considers the case of wage discrimination and
highlights the challenges of disentangling it from monopsony power empirically.

Background. We can write the labor disutility for R&D workers equivalently as

LR,t =

(
ℓ̄+

1

1 + ξ

)−1

·
∫ 1

0

(∫ ℓkt

0

(
ℓ̄+

(
ℓ

LR,t

)ξ)
· dℓ

)
· dk,

which highlights that the marginal disutility differs among the employees of a given firm.
Tracing-out the integral we see that the 0th workers has a disutility proportional to ℓ̄,
while the ℓkt-th worker has a disutility proportional to ℓ̄+(ℓkt/LR,t)

ξ. If a firm can impose
perfectly discriminatory wage, then it will pay a lower wage to the former than to the latter.
Resultingly, the wage for the ℓth worker at any company needs to satisfy

WR,t(ℓ)

Ct
=

(
LR,t
αR

) 1
ϵ

·

(
ℓ̄+

1

1 + ξ
+

ξ

1 + ξ
·
∫ 1

0

(
ℓkt
LR,t

)1+ξ

dk

)−1

·

(
ℓ̄+

(
ℓ

LR,t

)ξ)
.

Total labor cost for the firm, Ckt, is then just the intregral over all employees, and marginal
cost is the wage of the last employee:

Ckt =

∫ ℓkt

0

WR,t(ℓ) · dℓ ∝ ℓkt

(
ℓ̄+

1

1 + ξ
·
(
ℓkt
LR,t

)ξ)
with ∂Ckt

∂ℓkt
∝ ℓ̄+

(
ℓkt
LR,t

)ξ
.

Resultingly, firms’ marginal costs are the true marginal costs of hiring the last worker and
planner and decentralized equilibrium agree on the relative marginal cost of R&D workers
across firms. Thus, there is no misallocation of R&D workers across firms nor insufficient
demand due to firms’ gaming of the labor market.

A natural question is then whether we can distinguish between both models empiri-
cally. Unfortunately, this task is difficult as average wages behave quite similarly in both
models. In particular, one can verify that the elasticity of the average wage with respect
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to employment, Wkt = Ckt/ℓkt, remains positive:

∂ lnWkt

∂ ln ℓkt
= ξ ·

1
1+ξ

·
(

ℓkt
LR,t

)ξ
ℓ̄+ 1

1+ξ
·
(

ℓkt
LR,t

)ξ .
This phenomenon occurs as rising wages at the margin also push up the average wage, even
though inframarginal wages are unaffected.

Model. In practice, firms’ power to discriminate is likely limited due to information
asymmetries and/or fairness considerations. I, thus, consider a model in which workers are
paid a fraction αD of the fully discriminatory wage and a fraction 1 − αD of the required
marginal wage given total hiring. Total labor cost are then satisfy

C(ℓkt) ∝ ℓkt ·

(
ℓ̄+

1 + (1− αD) · ξ
1 + ξ

·
(
ℓkt
LR,t

)ξ)
(C.3)

Resultingly, marginal cost become proportional to

∂Ckt
∂ℓkt

∝

1 + (1− αD) · ξ ·

(
ℓkt
LR,t

)ξ
ℓ̄+

(
ℓkt
LR,t

)ξ
(ℓ̄+ ( ℓkt

LR,t

)ξ)

Evidently, marginal costs are proportional to marginal disutility for αD = 1 and to marginal
average disutility for αD = 0.22

Increasing Wage Discrimination. Figure C.2 explores the impact of price discrimi-
nation quantitatively in the main calibration. For reference, I also report values for the
baseline monopsony case and the case of no monopsony implemented through subsidies. As
shown in Panels A and B, Growth and welfare converge to the no monopsony case as the
model approaches full price discrimination. however, the gap remains large at intermediate
values.

22The elasticity of the average wage with respect to labor is

∂ lnC(ℓkt)/ℓkt
∂ ln ℓkt

= ξ ·
1+(1−αD)·ξ

1+ξ ·
(

ℓkt

LR,t

)ξ
ℓ̄+ 1+(1−αD)·ξ

1+ξ ·
(

ℓkt

LR,t

)ξ .
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Figure C.2: Price Discrimination and the Cost of Monopsony
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C. Average Wage Elasticity
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Notes: The figure shows the impact of increasing firms’ ability to price discriminate among workers. All
models employ the main calibration and then impose alternative values for αD. The dotted red and blue
lines show the outcomes under the calibrated model and the counterfactual with no monopsony power
respectively.

Calibration and Counterfactuals for αD = 0.5. Panels C and D in Figure C.2 high-
light that the estimated wage elasticities fall significantly as we assume higher levels of price
discrimination. To account for this fact, I re-calibrate the model via moment matching as-
suming as intermediate level of price discrimination, αD = 0.5, and report the associated
parameters in column (6) of Table A.1. The counterfactuals, presented in column (6) of
Table A.2, suggest that monopsony power continues to be a significant drag on economic
growth and welfare.

C.3 Regression bias due to materials

The relative demand for R&D inputs is given by

rkt
ℓkt

=

(
1− αL
αL

)
· ((1 + ϵkt) · wkt)σ (C.4)

Defining the effective price of R&D input as PR,t = (αL · ((1 + ϵit) · wit)1−σ + (1− αL))
1

1−σ ,
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firms’ first order conditions are given by

ℓkt = αL ·
(
wit · (1 + ϵit)

PR,t

)−σ

︸ ︷︷ ︸
relative demand effect

·
(
γ · Ak · E[zkt+1|zkt]

PR,t

) 1
1−γ

︸ ︷︷ ︸
total demand effect

(C.5)

Denoting R&D expenditure per work by w̃kt = (wkt · lkt + rkt)/ℓkt, one can show that

∂ ln w̃kt
∂ ln ℓkt

=
∂ lnwkt
∂ ln ℓkt

+
rkt

lkt · wkt + rkt
·
∂ ln

(
(1 + ϵkt)

σ · wσ−1
kt

)
∂ ln ℓkt︸ ︷︷ ︸

=bias

(C.6)

Thus, any estimate of the wage elasticities using R&D per worker is necessarily biased.
However, the direction and extent is ex-ante unclear and depends on the elasticity of
substitution between materials and workers. Note also the first term of the bias is the
expenditure share of materials such that the bias will be small in absolute value of the
materials share in cost is small as well.

C.4 Bias in Calibration

This section highlights the importance of accounting for stock-based compensation and
intermediate inputs. Table C.1 reports the regression coefficients when estimating columns
(1) and (2) in Table 1 in the data and the model under alternative specifications. The
first row reports the data, while the second row reports a calibration that does not include
stock-based compensation nor intermediate inputs. The calibration provides a reasonable
fit. The next rows add in stock-based compensation and intermediate inputs using the main
calibration. The resulting regression coefficients imply much larger labor supply elasticities
and, thus, suggest that the calibrated model overestimates the degree of monopsony power.
The final row re-calibrates the model to the main specification, providing a similarly good
fit, however, taking into account stock-based compensation as well as intermediate inputs.
The exercise thus suggests that the main regression evidence cannot directly speak to the
importance of these biases, however, we can take them into account in the model.
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Table C.1: Wage Regression in Data and Model

Model Reg. (1) Regression (2)
Main Base Inter.

Data 0.437 0.000 0.746

Baseline 0.437 0.197 0.746
+ Stock-based compensation 0.438 0.198 0.750
+ Intermediate inputs 0.425 0.197 0.720
+ Both 0.426 0.198 0.723

Adjusted 0.436 0.201 0.747

Notes: This table reports coefficient estimates for the main specifications from
the data and simulated model data. Column (1) reports estimates for specifi-
cation (18). Columns (2) and (3) report coefficient estimates from specification
(19). The baseline model has neither stock-based compensation nor material
inputs in R&D. Rows 3 and 4 add these to the simple calibration, respectively,
without recalibrating other parameters, while row 5 adds both simultaneously.
The final row re-calibrates the model with both extensions.

C.5 Regression Bias with Supply Shocks

A classic problem when estimating labor supply elasticities are labor supply shocks (Man-
ning, 2003). Consider an extension of my framework with labor supply shocks in the form
of labor disutility shifters αit and for simplicity assume ℓ̄ = 0. Labor supply is given by

LRt =

∫ 1

0

α−1
kt · ℓit ·

(
ℓkt · α−1

kt

LR

)ξ
· dk

First order conditions for labor supply confirm that larger values of αkt imply lower
disutility of working for the specific firm:

Wkt

Ct
= (1 + ξ) ·

(
LRt
αR

) 1
ϵ

α−1
kt

(
ℓkt · α−1

kt

LRt

)ξ
Focusing on the case with only in R&D, labor demand for the firm satisfies

γ · θkt · ℓγ−1
kt = (1 + ξ) ·Wkt.

As a result, equilibrium quantities and wages satisfy

ℓkt ∝ θ
1

ξ+1−γ

kt · α
1+ξ

ξ+1−γ

kt and Wkt ∝ θ
ξ

ξ+1−γ

kt · α
(1+ξ)(1−γ)

ξ+1−γ

kt
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It follows that estimating the labor supply elasticity with OLS under a combination of
demand and supply shocks would yield an estimate with a downwards bias that is increasing
in the relative prominence of supply (αkt) shocks:

∆ lnWkt

∆ ln ℓkt
= ξ · ∆ ln θkt

∆ ln θkt + (1 + ξ) ·∆ lnαkt
− (1− γ) · (1 + ξ) ·∆ lnαkt

∆ ln θkt + (1 + ξ) ·∆ lnαkt
.

Whether such a bias would also affect differential estimates is ex-ante unclear. The
formula above suggests that the bias is uniform across firms if the nature of monopsony
power is also uniform.
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D Online Empirical Appendix

D.1 Calculating the Labor Share in R&D

I calculate the labor share in R&D for the US in 2000 and 2019 using the “All industries”
data reported in the 2000 Survey of Industrial Research and Development (SIRD), which
was conducted by the Division of Science Resources Statistics within the National Science
Foundation (NSF), and the 2019 Business Enterprise Research and Development Survey
(BERDS), which was conducted by the National Center for Science and Engineering Statis-
tics (NCSES) and Census Bureau. In both cases, I first calculate the attributable R&D
costs, which excludes undefined costs and includes imputed opportunity cost for capital,
and then report the share of labor costs. For the 2000 figures I make a range of adjustment
to capture costs that are reported in detail in 2019, but lumped into an "Other" category
in 2000. These adjustments are based on the 2019 values reported for these categories and
detailed in the footnotes of Table D.1.

As reported in Table D.1, the labor share of attributable R&D costs was 79% in 2019
and 70% in 2000 yielding an average of 74.5%. The remainder of the costs is split between
“materials and equipment” and capital, where the former tends to be more important.
Notably, the labor share in R&D costs is significantly higher than the labor share in the
US overall, which is typically reported around 67% (Autor et al., 2020). Hence, R&D is a
very labor intensive task, justifying the focus on labor markets in R&D.
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Table D.1: National Labor Share in R&D

2000 2019

A. Raw R&D costs [% thereof]

Raw R&D cost 199.5 493.0
R&D wages and benefits 84.2 [42.2%] 268.0 [54.4%]
Stock-based compensation 12.3 [6.1%]∗ 39.0 [7.9%]
Temporary staffing 6.7 [3.4%]∗ 21.4 [4.3%]
Materials and supplies 28.1 [14.1%] 34.4 [7.0%]
Royalties and licensing fees 3.7 [1.9%]∗ 9.2 [1.9%]
Expensed equipment 2.9 [1.5%]∗ 7.2 [1.5%]
Lease and rental payments 3.3 [1.7%]∗ 8.2 [1.7%]
Depreciation 4.0 [2.0%] 18.9 [3.8%]
Other 54.2 [27.2%]∗ 86.6 [17.6%]

B. Attributable R&D cost

Raw R&D costs 199.5 493.0
– Other - 54.2 - 86.6
+ Imputed cost of capital 2.0 9.4
Attributable R&D costs 147.3 415.8

C. Attributable costs shares [% thereof]

Materials and equipment 34.8 [23.6%] 50.9 [12.2%]
Capital 9.3 [6.3%] 36.5 [8.8%]
Labor 103.2 [70.1%] 328.4 [79.0%]

Notes: Values in Panel A are taken from the source noted in the text except those
market with ∗, which are imputed. Labor related values are imputed to keep con-
stant their relative size to R&D wages and benefits. Other values are imputed to
keep constant their relative size to overall R&D. Finally, the “Other” category is ad-
justed such that the individual items add up to raw R&D cost. Panel B calculates
attributable R&D costs as raw R&D cost minus other cost plus cost of capital. The
latter are imputed as 50% of depreciation, which is in line with an interest rate of
7.5% and depreciation rate of 15%. The final panel categorizes R&D costs into mate-
rials and equipment, capital, and labor. Materials and equipment includes materials
and supplies, royalties and licensing fees, and expensed equipment. Capital includes
depreciation, lease and rental payments, and imputed cost of capital. Labor includes
R&D wages and benefits, stock-based compensation, and temporary staffing.
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