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Abstract

This paper examines how firms’ monopsony power—their ability to de-
press wages by restricting employment—in the market for inventors affects
U.S. innovation and economic growth. Using an instrumental variable strat-
egy, I estimate firm-level inventor labor supply elasticities and find that firms
face less than perfectly elastic supply, with larger employers wielding greater
monopsony power. I develop and quantify a heterogeneous firms growth model
with size-dependent monopsony power that matches this evidence. The model
suggests that monopsony power reduces annual U.S. economic growth by 0.20
percentage points and welfare by 11% through depressed R&D employment
and misallocation.
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1 Introduction

The growing dominance of large firms has fostered an active debate on its origins and
impact on the U.S. economy (Grullon et al., 2019; Autor et al., 2020). Politicians,
commentators, and academics alike have raised concerns that rising concentration
may be closely linked to a perceived decline in competition and rise in firms’ mar-
ket power (Wu, 2018; Philippon, 2019; Meagher, 2020). Concerns about insufficient
competition increasingly include labor markets where large firms may have the power
to suppress the wages of their employees. For example, labor markets are explicitly
mentioned in the White House’s 2021 executive order on “Promoting Competition
in the American Economy” and they are at the core of the revised 2023 Horizontal
Merger Guidelines, which were informed by the recent monopsony literature (The
White House, 2021; Berger et al., 2023).

Labor market power, commonly referred to as monopsony power, was considered
most prevalent for “low-skilled” workers in rural communities, e.g., for miners in
towns with only few coal mines in close proximity, however, recent evidence suggests
that it extends to “high-skilled” workers (Goolsbee and Syverson, 2023; Seegmiller,
2023). One interpretation of these novel findings focuses on a perhaps previously
less emphasized source of monopsony power: human capital specificity. For example,
registered nurses provide invaluable services to hospitals, but their significant human
capital—as indicated by the required graduate degree—is only valuable within the
profession. Resultingly, hospitals can suppress nurses’ compensation in face of limited
competition for their services (Prager and Schmitt, 2021).

Building on these findings, I study the macroeconomic consequences of monop-
sony power over inventors, a group of highly specialized workers with an outsized
impact on productivity and growth. Monopsony power may be both particularly
widespread and concerning for inventors, since their skills tend to be highly special-
ized and their output, i.e., inventions, is considered one of the key drivers of long-run
economic growth and welfare. Furthermore, the compounding nature of innovation
implies that monopsony among innovators may have important dynamic implications
that go beyond static inefficiencies. Anecdotal evidence suggests that tech compa-
nies are aware of their potential market power over these workers and colluded to
suppress their wages in the past. For example, large tech firms had agreements not
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to poach each others’ engineers in order to keep their wages low (Edwards, 2014).
Apple, Adobe, Intel, and Google were fined by the Department of Justice in 2010 for
these non-poaching agreements, while Microsoft only recently announced it would not
enforce non-compete agreements (The Department of Justice, 2010; Reuters, 2022).

This paper estimates that monopsony power in the market for corporate inven-
tors has a sizable negative impact on innovation and economic growth. I find that
firms with large inventor workforce appear to have significant monopsony power,
while smaller firms face more competitive conditions. Interpreted through the lens
of a quantitative endogenous growth model, this evidence suggests that monopsony
power might depress aggregate inventor employment and lead to an inefficient al-
location of inventors across firms. Misallocation occurs through a size-dependent
monopsony channel that reduces inventor employment disproportionally in larger
employers. Quantitatively, my results indicate that monopsony power over inven-
tors reduces long-run economic growth by 0.20 p.p. leading to welfare loss of 11%
compared to a world in which firms act as price takers.

I reach these conclusions in three steps. First, I introduce monopsony power over
inventors into a simple endogenous growth model with heterogeneous firms. Inventors
choose their employer based on idiosyncratic preference shocks and wages offered as in
Card et al. (2018). As a result, firms face an upwards sloping labor supply curve and
can lower wages marginally without losing their entire inventor workforce, as would
be the case in the standard competitive model. Similar to Berger et al. (2022), I allow
for size-dependent monopsony power such that large employers of corporate inventors
may have more power over them. Monopsony power depresses the aggregate demand
for corporate inventors, resulting in lower R&D employment and lower economic
growth. Size-dependence of monopsony power further induces misallocation across
firms as larger firms depress their demand for corporate inventors more than smaller
firms, which leads to an additional drag on innovation and economic growth.

In the second step, I present novel evidence on firms’ monopsony power over cor-
porate inventors in the U.S. I estimate the average firm-level elasticity of inventor
wages with respect to their employment, i.e., their inverse labor supply elasticity,
in a sample of U.S.-listed firms by regressing inventor wage growth on employment
growth. I construct inventor employment and their wages by combining firms’ fi-
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nancial statements with their patent records. The literature has long recognized the
potential identification challenges in this setup (Manning, 2011). Most importantly,
labor supply shocks, such as preference shocks over firms, can lead to a downwards
bias in the estimated elasticity. In particular, a positive labor supply shock reduces
the wage a firm needs to pay in order to maintain a given level of employment, which
is informative about the wage level of a firm, but not its local labor supply elasticity.
I propose to address this identification challenge by using stock market returns as an
instrument for shocks to firms’ labor demand as in Seegmiller (2023). The instrument
is relevant if stock market returns partly reflect shocks that induce the firm to expand,
such as demand shocks for its products. It satisfies the exclusion restriction if there
is no link between stock market returns and inventor wages other than their employ-
ment. I confirm robustness using firm-level productivity shocks from Imrohoroglu
and Tuzel (2014).

My estimates suggests that monopsony power is both sizable and size-dependent.
I estimate an average inverse labor supply elasticity of 0.44, which implies that a firm
would lose about 23% of its inventors if it were to reduce their wages by 10%. For
comparison, Seegmiller (2023) estimates an elasticity of 0.82 for high-skilled workers,
while Yeh et al. (2022) estimate an average elasticity of 0.68 for nonproduction work-
ers and Berger et al. (2022) estimate an elasticity of 0.33 for all workers in firms with
a 10% market share in their local labor market. Importantly, I find that firms with
above median R&D workforce face an inverse labor supply elasticity of 0.75 compared
to approximately 0 for smaller firms. Thus, firms with above median inventor em-
ployment would lose only about 13% of their R&D workforce if they were to reduce
their wages by 10%, while below median R&D employment firm have no wage set-
ting power and face a perfectly competitive labor market. Similarly, the literature
on production workers finds that larger employers face less elastic labor supply and,
thus, have more monopsony power. I confirm that my estimates are not driven by a
changing composition of corporate researcher quality nor pre-trends.

In the final step, I extend the model introduced in the first step and calibrate it by
moment matching using the evidence on the labor supply elasticity of inventors. The
calibrated model is then used as a laboratory to study the impact of monopsony in the
market for corporate inventors on innovation and economic growth. I introduce three
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extensions that account for important structural features of the R&D sector. First,
I allow for non-listed firms in the R&D sector. These firms tend to be much smaller
in the data and, thus, may mitigate some of the monopsony power of larger firms.
Second, I account for stock-based compensation of inventors, which may constitute
a violation of the exclusion restriction in my estimation by providing a direct link
between wages and the stock market performance of a firm. Lastly, I allow for non-
labor inputs into the R&D production process, which limit the incentives of firms
to downsize by providing a substitute for inventors. I calibrate the extended model
using a combination of external calibration with standard parameters and moment
matching. The calibrated model matches key data moments including the inventor
labor supply elasticity estimates.

The calibrated model suggests that monopsony power over inventors slows down
innovation and economic growth significantly due to a combination of insufficient
R&D employment and misallocation of inventors across firms. Forcing firms to be
price takers in the market for inventors increases economic growth from 1.50% to
1.70% per year—leading to a 11% welfare improvement. The acceleration in eco-
nomic growth is driven both by a 2% rise in R&D employment as well as a significant
improvement in aggregate R&D productivity due to more productive allocation of
inventors. Holding R&D employment fixed, the improvement in the allocation of
inventors alone accelerates economic growth rate by 18 p.p., highlighting the im-
portance of the misallocation channel of size-dependent monopsony. I conclude by
highlighting three forces that might limit the cost of monopsony: wage discrimination
among workers, firm entry, and the presence of socially inefficient differences in firms’
ability to benefit from their inventions.

Literature. This paper is closely connected to three strands of the literature. First,
I contribute to the literature on monopsony power by providing novel evidence in the
market of corporate inventors and linking size-dependent monopsony power to R&D
investments and, thus, economic growth. The literature documents that monop-
sony power is pervasive in the production sector and stronger for larger employers
(Azar et al., 2020; Arnold, 2021; Kroft et al., 2021; Lamadon et al., 2022; Yeh et al.,
2022). Furthermore, there is growing evidence of monopsony power in labor markets
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for “high-skilled” workers (Prager and Schmitt, 2021; Goolsbee and Syverson, 2023;
Seegmiller, 2023). I complement this literature by documenting monopsony power
over an important group of skilled workers: corporate inventors. This group is crucial
due to its close link to R&D investments, which in turn are commonly identified as a
main driver of long-run productivity growth in the U.S. My model builds on the litera-
ture microfounding monopsony power via preferences over employers. An alternative
approach focuses on a lack of outside options for workers as a microfoundation of
monopsony power (Shi, 2023; Schubert et al., 2023; Bagga, 2023). I complement the
theoretical literature by introducing preference-based monopsony power into a gen-
eral equilibrium endogenous growth model with heterogeneous firms and estimating
that tackling monopsony power could significantly accelerate U.S. economic growth.
Relatedly, Berger et al. (2022) introduce a structural general equilibrium model of
the production with monopsony power.

Second, I contribute to the literature on resource allocation in the R&D sector.
The existing literature focuses primarily on the misalignment of private and public
marginal benefits of R&D investment, which can also lead to misallocation, rather
than misalignment of marginal costs as in my case. The literature has highlighted a
range of potential mechanisms for such misalignment including knowledge and busi-
ness stealing externalities, and differences in firms’ ability to profit from their in-
ventions or protect their intellectual property. Romer (1990) and Aghion and Howitt
(1992) first argued that this misalignment can lead to under investment in R&D, while
the more recent literature is focused on heterogeneous misalignment across firms that
leads to misallocation of R&D resources (Acemoglu et al., 2018; Cavenaile et al., 2021;
Mezzanotti, 2021; Aghion et al., 2024; König et al., 2022; Terry, 2023). I complement
this literature by instead focusing on a misalignment in the marginal costs perceived
by the firm and a planner due to monopsony power.Interestingly, this mechanism
leads to the conclusion that large firms might not do enough R&D relative to small
firms, while the literature typically finds that they might do too much (Akcigit et
al., 2022; Manera, 2022; de Ridder, 2024). These findings suggests that both types
of mechanisms might partly offset each other in practice. My paper is also related
to the literature on talent (mis-)allocation in the R&D sector (Akcigit et al., 2020;
Prato, 2022; Celik, 2023). I complement this literature by focusing on market power
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as a source of talent misallocation.
Finally, my paper falls within the larger literature on the macroeconomic impli-

cations of factor misallocation, which has mostly focused on the production sector.
Restuccia and Rogerson (2008) and Hsieh and Klenow (2009) first argued that mis-
allocation of production factors may be significant and could have a large impact on
productivity and output. The subsequent literature investigated a range of potential
sources of misallocation including financial frictions, government intervention, infor-
mation frictions, and adjustment costs (Asker et al., 2014; Midrigan and Xu, 2014;
David et al., 2016, 2022). More recently, the literature has (re-)considered market
power in product and labor markets as a significant source of resource misallocation
in the production sector that may significantly reduce aggregate productivity and
depress output levels (Loecker et al., 2020; Berger et al., 2022). I contribute to this
literature by focusing on misallocation in the R&D sector, which may lead to slower
innovation and economic growth rather than lower output levels. This focus coincides
with Lehr (2024), who studies misallocation in the R&D sector in general. This paper
is complementary as it studies and provides evidence for a particular mechanism of
misallocation in the R&D sector: monopsony power.

2 A Growth Model with Monopsony over Inven-
tors

This section introduces preference-based monopsony power into a general equilibrium
growth model in the tradition of Romer (1990) to investigate the potential impact
of monopsony power on innovation and economic growth. The model is simplified to
emphasize the main insights and will be extended in Section 4 to introduce elements
that may shape the model’s quantitative predictions in a full calibration.

2.1 Model Description and Decentralized Equilibrium

Time is discrete and indexed by t. The economy is populated by a representative
household that supplies production and research labor and allocates its income be-
tween consumption and savings. The final good is produced by a representative firm
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from producton labor and intermediate inputs. The latter are produced by a unit
mass of profit-maximizing research firms that own their exclusive production rights.
In turn, research firms hire researchers and materials to invent new types of interme-
diate goods.

Workers and Labor Markets. There is a representative household with King-
Plosser-Rebelo preferences over consumption Ct and labor supply for production LP,t
and R&D LR,t represented by flow utility function U(Ct, LP,t, LR,t) (King et al., 1988):

U(Ct, LP,t, LR,t) =
(Ct · v(LP,t, LR,t))1−σ − 1

1− σ

with v(LP,t, LR,t) = exp
(
− ϵ

1 + ϵ

(
α
− 1

ϵ
P · L

1+ϵ
ϵ

P,t + α
− 1

ϵ
R · L

1+ϵ
ϵ

R,t

)) (1)

The parameter σ controls the intertemporal elasticity of substitution, while ϵ deter-
mines the aggregate labor supply elasticity. The preference parameters αP and αR

shift the supply of production and research labor. The preferences are chosen to al-
low for a balanced growth path with constant labor supply and steady consumption
growth. The structure of labor disutility is such that labor supply of both types is
independent, which allows for a separation of the production and R&D sectors. This
assumption captures the idea that production and research labor are very different
tasks requiring very different skills or training and, in practice, might be executed by
different workers.

Labor supply for researchers itself is potentially differentiated, which captures the
idea that firms are imperfect substitutes from the perspective of workers due to e.g.
differential amenities, management styles, company cultures or visions. I denote the
supply of researchers for firm k ∈ [0, 1] by ℓkt and total labor supply LR,t is given by
aggregator

LR,t =

(
ℓ+

1

1 + ξ

)−1

·

(∫ 1

0

∫
ℓkt

(
ℓ+

(
ℓ

LR,t

)ξ)
dℓ · dk

)
with ξ ≥ 0. (2)

The aggregator integrates over firms as well as over workers within firms, where the
marginal disutility for is increasing in the number of workers hired as long as ξ > 0.
This formulation captures the idea that workers have idiosyncratic preferences over
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employers such that firms hiring more researchers face ever less enthusiastic workers
at the margin. As long as ℓ̄ = 0, the aggregator is of the CES-type and, thus, has
a constant elasticity with respect to labor supply for an individual firm. For ℓ̄ > 0,
the aggregator is non-homothetic with a rising elasticity with respect to ℓkt such that
larger employers face more inelastic R&D labor supply. Solving the inner level of
aggregation, we have

LR,t =

(
ℓ+

1

1 + ξ

)−1

·

(∫ 1

0

ℓkt ·

(
ℓ+

1

1 + ξ

(
ℓkt
LR,t

)ξ)
dk

)
.

From this formulation, we can immediately see that scaling by LR,t on the right-hand
side ensures that proportional shifts in ℓkt across all firms map 1-for-1 into LR,t.

The household receives income from three sources: labor supply, firm ownership,
and bond holdings. Production workers are paid common wageWP,t, while researchers
are paid firm-specific wages WR,kt. Bonds holdings Bt earn gross interest Rt+1 in the
subsequent period and firm ownership yields profits Πt. The household owns all firms.

Note that I do not allow firms to pay discriminate wages across researchers, but
instead force them to pay a single firm-level wage. Labor supply then implies that the
wage is set such that it compensates the last hired researcher for their labor supply.
This assumption is crucial to generating monopsony power in this model as firms take
into account that they have to pay inframarginal researchers higher wages to attract
additional researchers at the margin. I discuss the implication of price discrimination
in the discussion section.

Finally, the household allocates income across consumption Ct and riskless bond
holdings Bt, which are in 0 net-supply and earn gross return Rt+1 in the following
period. The budget constraint is thus given by

Bt+1 + Ct = Rt · Bt +WP,t · LP,t +
∫ 1

0

WR,kt · ℓkt · dk +Πt. (3)

The household discounts the future at rate β < 1 and the combined probem is
given by

max
{Ct,LP,t,{ℓkt}k∈[0,1]}

∞∑
t=0

βt · U(Ct, LP,t, LR,t) s.t. (1), (2), and (3). (4)
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Final Production. A representative firm hires production labor LP,t and buys
intermediate inputs {xjt}j∈Qt to produce output Yt with production function

Yt = L1−α
P,t

∫
Qt

z1−αjt · xαjtdj, (5)

where zjt is a demand-shifter for intermediate inputs. The firm takes as given the
wage WP,t and intermediate input prices pjt and maximizes its profits:

max
LP,t,{xjt}j∈Qt

Yt −WP,t · LP,t −
∫
Qt

pjt · xjtdj s.t. (5). (6)

Intermediate good producers. Intermediate goods in the economy are protected
by patents such that they can only be produced by their proprietor. There is a unit
mass of intermediate good firms, which act as proprietors, with constant unit cost ψ
in terms of the final good. For each intermediate good, the proprietor solves

πjt = max
xjt

pjt · xjt − ψ · xjt (7)

subject to the product demand curve from the final production sector.

Innovation Each intermediate goods firm can hire ℓkt research workers to produce
new blueprints Mkt+1 in the subsequent period subject to wage cost WR,kt according
to production function

Mkt+1 = Qt · Ak · ℓγkt, (8)

where Qt =
∫ Qt

0
zkt · dk is the quality adjusted mass of products, which is also the

aggregate state of technology, and Ak is a firm-specific productivity shifter.
New blueprints are added to their stock of protected products such that the quality

adjusted mass of inventions Qkt evolves according to

Qkt+1 =Mkt+1 · zkt+1 +Qkt. (9)

The product-specific demand-shifter is determined at the point of invention and
is identical to all products invented by the same firm in the same period.1 Firms’

1Alternatively, one could assume that demand for all products fluctuates concurrently at the firm
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demand-shifter is persistent and evolves according to

ln zkt+1 = (1− ρ) · µ+ ρ · ln zkt + σ · νkt+1 with νkt+1 ∼ N(0, 1). (10)

Intermediate firms hire researchers to maximize their value

Vt(Qkt, zkt) = max
ℓkt

{∫
j∈Qkt

πjt · dj −Wkt · ℓkt +R−1
t+1 · Et [Vt+1(zkt+1, Qkt+1)|zkt]

}
(11)

subject to the labor supply curve and the evolution of their portfolio of inventions.

Growth. The aggregate state of technology Qt =
∫ 1

0
Qkt · dk evolves according to

Qt+1 = Qt +

∫ 1

0

Mkt+1 · zkt+1 · dk. (12)

Market Clearing. Labor market clearing is implicit in the household setup such
that the only remaining market that needs to be cleared is the product market, which
requires:

Yt = Ct + ψ ·
∫
Qt

xjt · dj (13)

The private equilibrium definition is standard and formalized in Definition 1.

Definition 1 (Decentralized Balanced Growth Path Equilibrium). A sequence of
quantities and prices such that (a) households maximize utility by solving (4), (b)
firms maximize profits by solving (6) and (7), and firm value by solving (11), (c)
markets clear (13), (d) quantities grow at a constant rate g = Qt+1/Qt − 1, except
for labor supply, which remains constant at the aggregate level.
level. Such an assumption will affect the precise algebra of the model, but not the qualitative or
quantitative properties of the model with respect to the innovation sector.
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2.2 Planner’s Problem

To study optimal policy, it is useful to introduce the planner problem. The planner
chooses quantities to maximize expected utility:

max
∞∑
t=0

βt·U(Ct, LP,t, LR,t) s.t. (1), (2), (5), (10), (13), and

Qt+1/Qt − 1 =

∫ 1

0

Ak · zkt+1 · ℓγkt · dk
(14)

The associated equilibrium definition is provided in Definition 2.

Definition 2 (Planner Balanced Growth Path Equilibrium). A sequence of quantities
that solve the planner problem (14) such that productivity Qt grows at a constant rate
g.

2.3 Monopsony in R&D and Growth

The characteristic feature of monopsony power is that firms’ wages respond to their
demand for labor and that firms take this effect into account. Proposition 1 highlights
the first property in the model by showing that firms’ R&D wages respond to their
demand for R&D workers. Furthermore, this sensitivity is stronger for firms that are
already larger when ℓ̄ > 0, i.e., in the case of log-concave labor supply. Resultingly,
firms’ demand for R&D workers becomes less sensitive to R&D productivity shocks
or targeted subsidies as they get larger.

How do these properties compare to the allocation in a planner equilibrium? It
turns out that the sensitivities to R&D productivity or subsidies coincides in the
planner and decentralized equilibrium as long as monopsony power is log-linear, i.e.,
ℓ̄ = 0. With log-concave R&D labor supply, the demand for R&D workers is less
sensitive in the decentralized equilibrium as the sensitivity of wages changes alongside
the wages or marginal products themselves, which is only taken into account by profit
maximizing firms.

Derivations and proofs are provided in Appendix B.

Proposition 1 (Wages in the R&D sector). Consider an R&D subsidy (1−τkt). The
elasticity of the firm’s R&D wage with respect to a change in R&D workers induced
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by a small change in the subsidy rate is given by

∂ lnWR,kt

∂ ln ℓkt

∣∣∣∣∣
∆τkt

= ξ · (ℓkt/LR,t)
ξ

ℓ̄+ (ℓkt/LR,t)ξ
, (15)

which is positive if ξ > 0 and, in addition, increasing in the firm’s relative R&D
employment if ℓ̄ > 0. Furthermore, firms’ equilibrium R&D employment becomes
less sensitive to productivity shocks with monopsony power, ξ > 0, and particularly
so for larger firms if ℓ̄ > 0 as well. Relative to a planner equilibrium, firms’ R&D
employment is equally sensitive to productivity shocks in the decentralized equilibrium
as long as ℓ̄ = 0 and becomes less sensitive in the case of ℓ̄ > 0 as inventor employment
increases.

Proposition 2 highlights two effects of monopsony power on equilibrium R&D
employment. Firstly, monopsony power lowers the equilibrium R&D effort vis-a-vis
a world without it as long as the aggregate supply of inventors is not perfectly in-
elastic. Even in absence of monopsony power, the decentralized equilibrium features
insufficient R&D due to an insufficient market size, which is linked to the monopoly
distortion in the product market, and intertemporal knowledge externalities. Monop-
sony power thus further increases this gap. Secondly, with log-concave labor supply,
the relative allocation of R&D workers in the decentralized equilibrium is skewed to-
wards small firms as the former take advantage of their higher monopsony power by
reducing their demand for R&D workers. Thus, in this case, not only the aggregate
level of R&D employment is too low, but R&D workers are also not optimally allo-
cated across firms from the perspective of a planner, which further reduces economic
growth. I refer to the latter as misallocation.

Proposition 2 (Efficiency in the R&D sector). Denote quantities in the Decentralized
and P lanner equilibria by superscripts and suppose ℓ̄ = 0, i.e., labor market power is
homogeneous. Then, employment of R&D workers is insufficient in the decentralized
equilibrium (LDR,t < LPR,t), however, their relative allocation across firms is efficient,
i.e., ℓDkt/ℓDmt = ℓPkt/ℓ

P
mt ∀k,m. The efficient equilibrium can be achieved with untargeted

output and R&D subsidies. Conversely, suppose that the aggregate level of R&D
workers is fixed, i.e. ϵ→ 0, then R&D employment is efficient as long as labor market
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power is homogeneous. With differences in R&D labor market power, the allocation
of R&D workers in the decentralized equilibrium is inefficiently tilted towards smaller
firms, i.e., ℓDkt/ℓDmt < ℓPkt/ℓ

P
mt if ℓDkt > ℓDmt. An efficient equilibrium can only be achieved

by targeted R&D subsidies.

What are the policy implications? In the case of common monopsony power, the
planner equilibrium can be achieved by a general subsidy to firms’ R&D activity
or, alternatively, by subsidizing R&D workers. Such a subsidy becomes ever more
important the more elastic the supply of R&D workers in the economy. In the case of
heterogeneous monopsony power, general R&D subsidies are insufficient and targeted
interventions become necessary. The optimal (marginal) R&D subsidy rate is larger
for firms hiring more inventors.

Optimal policy under size-dependent monopsony power suggests that large em-
ployers of inventors should hire even more of them and, thus, appear to invest too
little into R&D. This result is in stark contrast to the recent literature arguing that
large firms might invest too much in R&D relative to small firms (Aghion et al.,
2024; de Ridder, 2024). Both views are easily reconciled when considering the source
of heterogeneity in innovation activity. In my model, heterogeneity is driven by pro-
ductivity differences across firms that a planner would also consider when allocating
R&D workers. In contrast, differences in R&D activity across firms in the aforemen-
tioned papers are driven by heterogeneity in the ability to profit from innovation,
which leads large firms to do too much R&D relative to a planner, who would not
factor in firms’ ability to charge higher markups when deciding on the allocation of
R&D resources. In practice, both forces might be partly offsetting with ambiguous
net effects. This paper focuses on quantifying the effect of monopsony power only.

Finally, there are tell-tale signs of monopsony in the model that do not require
estimating the labor supply elasticity. In particular, the R&D return, or the ratio
of R&D output to its costs, is an increasing function of firms’ R&D employment
if and only if there is size-dependent monopsony power, as shown in Proposition 3.
Intuitively, firms with more monopsony power are able to achieve higher R&D output
relative to R&D costs by supressing wages. The link between monopsony power and
R&D employment then extends to the R&D returns. In contrast, if firms acted as
price takers, they would equalize wages to marginal products of R&D workers and,
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thus, also equalize R&D returns at a common value. Finding a positive correlation
between R&D returns and R&D employment is thus a potentially strong signal of
size-dependent monopsony power.

Proposition 3. Let the expected R&D return of a firm be the ratio of the expected
value created from innovation to the total cost. Its equilibrium value is given by

Expected R&D Returnkt ≡
Mkt+1 · Et[zkt+1|zkt] · π̃t+1/Rt+1

WR,kt · ℓkt
=

1

γ
· (1 + 1/ϵkt). (16)

It is constant across firms if and only if ℓ̄ = 0 and increasing in ℓkt for ℓkt > 0.
The average product of an R&D worker is increasing in ℓkt if ξ > 0 and ℓ̄ ≥ 0, and
constant otherwise.

3 Evidence

This section provides evidence on monopsony power in the market for inventors in
the U.S. I first describe how I measure key variables in my estimation, including R&D
employment and wages, before discussing the estimation strategy and presenting the
estimates.

3.1 Data

My data combine information on the financial performance and innovation activity
of US listed firms. Using firm-level data is key in my context since the firm-level
elasticity of labor supply is different from the market-level elasticity in the model
presented above. As formally shown in Proposition 4 in the Appendix, market level
variation in R&D wages and employment can only identify the aggregate R&D labor
supply elasticity ϵ, rather than the parameters of the firm-level R&D labor supply
elasticity {ξ, ℓ̄}. Intuitively, individual firms can expand R&D employment by hiring
from competitors or by hiring from non-employment. However, if all firms expand,
then only the latter option is feasible, leading to a potentially different labor supply
elasticity.

I obtain financial data from WRDS Compustat, who collect and harmonize them
based on mandatory filings by the company. The data extend back to 1959 and their
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availability is tied to the company’s listing status. Variables of interest include R&D
expenditure (xrd), employment (emp), and stock market returns. I combine this
data with information on firms’ patenting activity using the crosswalk between firms
and patents developed in Kogan et al. (2017). The patent data from Kogan et al.
(2017) and the USPTO’s Patentsview database includes information on firms’ granted
patents, including application date and technology classification, and the inventors
that contributed to the patent.

Patents are arguably the most direct measure of R&D output available to re-
searchers. A patent captures an invention that the issuing patent office, here the
USPTO, deemed new and useful, and grants the owner exclusive rights to the use of
the invention described therein. These rights give firms strong incentives to patent
inventions, making newly granted patents a prime source for information on firms’
innovation activity. Nonetheless, it is well known that not all inventions are patented
such that patent-based information may be incomplete (Cohen et al., 2000; Mezzan-
otti and Simcoe, 2023).

The primary variables of interest when investigating monopsony power are em-
ployment and wages. I measure inventor employment using patent records. I link
inventors across patents using the USPTO’s disambiguation and assign them to firms
based on whether they are listed on a firm’s newly-granted patent in the year prior
to the application. I then aggregate to the firm-level by summing over all inventors.
This measure may be incomplete, e.g., because not all active researchers at the firm
are listed on a patent within a given period, however, it provides a readily available
measure of innovators contributing to the firms’ patent output. I construct three
additional measures using a full-time equivalent approach, only inventors located in
the US, or focusing on the inventors identified by Kaltenberg et al. (2021). I simi-
larly create a measure on inventor productivity using lifetime patenting measures and
calculate average inventor productivity at a firm using the appropriate averages. See
Appendix A.1 for additional details.

I measure inventor wages as the ratio of R&D expenditure divided by inventor
employment. This measure suffers from three potential concerns. First, not all R&D
expenditure is on labor inputs as R&D often also requires material inputs and ma-
chinery. NSF statistics suggest that R&D is very labor intensive with a labor share
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of costs of 79% in 2021.2 Thus, we might expect some measurement error from this
misspecification, but it is likely small as I discuss in Section 4. Second, my measure of
inventors might be incomplete as discussed above, which will add measurement error.
Third, the implicit assumption when measuring inventors is that R&D projects re-
sult in a patent application within a given year. In practice, there might be research
projects with larger time horizons, which could result in a misalignment between R&D
expenditure and recorded patents that shows up as measurement error. My analysis,
thus, needs to take into account potential measurement error in R&D wages.

As discussed in the previous section, the R&D return can be informative about
monopsony power. I measure it as the ratio of valuations of new patent to previous
year’s R&D expenditure at the 5-year horizon:

R&D Returnit ≡
∑4

s=0 Patent Valuationsit+s∑4
s=0 R&D Expenditureit−1+s

. (17)

I also construct measures of firms’ dominance in their technology markets and inventor
specialization, which are described in the text and Appendix A.1.

I restrict the sample to 1975-2014 and drop firms with consistently low R&D
expenditures (less than 2.5m 2012 USD per year), low patenting (less than 2.5 patents
per year) or less than 5 sample years. The final sample has about 15,000 observations
for 900 firms and covers more than 80% of R&D expenditure in Compustat and patent
valuations in Kogan et al. (2017) for the 1975-2014 period as well as 40% of the R&D
recorded in BEA accounts. See Appendix A.1 for further data details.

3.2 Estimation Approach

The inverse labor supply elasticity for inventors determines the extent of monopsony
power in the model presented in the previous section and is, thus, key to under-
standing its impact on the innovation economy. The elasticity can be estimated by

2I calculate this figure using Table 10 in the NSF’s Business Enterprise Research and Develop-
ment Survey statistics for 2019. In my calculations I exclude “other” R&D expenditure and “other
purchased services" and add 1/3 to the expenditure on depreciation to capture cost of capital as-
suming a 5% interest rate and 15% depreciation rate. Total R&D expenditure on labor includes
“salaries, wages, and fringe benefits," "stock-based compensation," and "temporary staffing." The
labor share in all R&D expenditure is 67%, while the labor share for adjusted R&D expenditure is
79%. See Online Appendix C.1.
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regressing log changes in the inventor wage on changes in log inventor employment as
shown in equation (18) (Manning, 2003). The coefficient on the changes in inventor
employment identifies the average inverse labor supply elasticity if the error term is
uncorrelated with changes in inventor employment. Running the regression in differ-
ences has the benefit of accounting for long-run differences in levels. In my baseline,
I select t− 2 as reference period and investigate the change up to t+3. I also provide
results for alternative horizons k.

∆k ln Inventor Wageit = ϵ̄k ×∆k ln Inventorsit + αj(i)×t + εit (18)

Estimating this equation in OLS can lead to biased estimates in the presence of labor
supply shocks, which simultaneously affect wages and employment, and, thereby,
violate the exclusion restriction. For example, if workers exogenously become more
attracted to a firm, we might expect that it can lower wages, while hiring more
workers. However, this variation does not identify the response of wages if the firm
wanted to expand employment in absence of such a shock. In summary, supply shocks
confound the estimation of a supply elasticity, and we, thus, need demand shocks for
identification.

To address this concern, I propose to use stock market returns in t − 1 as an
instrument for changes in inventor employment, which follows Seegmiller (2023)’s
identification strategy for the overall labor supply elasticity. The instrument is rele-
vant if stock market returns reflect changes in firm productivity or consumer demand
that incentivize it to expand production. Expansion then increases the market size
for new products, which gives the firms an incentive to expand R&D as well. The
exclusion restriction requires that stock market returns do not affect inventor wage
growth other than through their impact inventors employment growth. As a ro-
bustness check, I also present results using firm-level TFP shock constructed from
Imrohoroglu and Tuzel (2014).

I connect the inverse labor supply elasticity to inventor employment with an in-
teraction term for firms with above median R&D employment in the previous year.
Under size-dependent monopsony power, we expect a positive coefficient on the inter-
action term, as firms with large inventor employment face a high inverse labor supply
elasticity. I follow a similar approach for above and below median R&D return, which
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is also linked to the inventor supply elasticity as discussed in the previous section.

∆ ln Inv. Wageit = ϵl ×∆ ln Inv.it
+ (ϵh − ϵl)×∆ ln Inv.it × {Above Median Inventors}it
+ β{Above Median Inventors}it + αj(i)×t + εit

(19)

The exclusion restriction for the interaction terms requires that the growth rate of
R&D wages is not linked differentially to stock returns for larger firms other than
through their impact on R&D employment growth.

There are several potential identification challenges. First, stock market returns
may partly reflect labor supply shocks if they increase firm value.3 The estimated
elasticity may then be downwards biased as supply shocks, such as preference shocks,
lower wages and raise employment. These shocks may also bias the interaction co-
efficient, e.g., if labor supply shocks are more important for firms with larger R&D
employment.4 Second, incentive pay for researchers, e.g., via granted stock options
or payment in shares, may lead to a violation of the exclusion restriction by inducing
a correlation between returns and inventor wages unrelated to inventor employment.5

However, this is only a concern if the incentive pay is structured such that stock mar-
ket returns affect the level of compensation. Note also that I investigate differences
in R&D wages between t+ 3 and t− 2 and instrument using returns in t− 1. Thus,
my estimation should be robust if bonuses are one-off and are paid out in t − 1 or
t.6 Incentive pay could also bias estimate of the interaction regression, e.g., if firms
with larger R&D employment rely more on it.7 Finally, the measured R&D wages in-
clude non-labor expenditure and, thus, wage growth may measured with error. Such
measurement error biases the regressions if it is systematically related to the instru-

3Importantly, these supply shocks need to apply to the market for inventors rather than other
workers. A shock that lowers required wages for the non-inventor workforce without affecting re-
quired wages of inventors does not violate the exclusion restriction.

4For example, larger employers might rely more on their reputation to hire and retain inventors,
which may expose them more to preference stocks.

5About 12% of total labor compensation in R&D is stock-related (NSF BERDS, 2019).
6Alternatively, stock-based compensation is not a concern if it merely affect how compensation

is paid out, e.g., 15% in stocks, rather than the level of compensation. I discuss alternative models
of such bonus payments in Appendix B.3.

7Data from the NSF suggests that larger firms, as measured by total employment, do rely more
on incentive pay, however, the difference is quantitatively small.
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ment.8 I consider this threat together with incentive pay explicitly when quantifying
the aggregate implications of R&D monopsony power.

3.3 First-stage and Reduced Form

I report the first stage results in Panel A of Figure 1. Stock market returns are asso-
ciated with a significant subsequent expansion of inventor employment. The baseline
estimate (t = 3) suggests that a 10% increase in the firm valuation is associated with
a 2% expansion of R&D employment. The estimate is highly statistically significant
and has an associated F-statistic comfortably above the commonly referenced thresh-
old of 10. R&D employment rises gradually over time, echoing estimates for regular
workers in Seegmiller (2023).

Figure 1: First Stage and Reduced Form Estimates

-.1

0

.1

.2

.3

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Coefficient
95% CI

A. R&D Employment

-.05

0

.05

.1

.15

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Coefficient
95% CI

B. R&D Wage

Panel B reports the reduced-form estimate confirming that stock market returns
are significantly associated with rising R&D wages. The baseline estimate suggests
that a 10% increase in firm value is associated with a 1% rise in R&D wages. Combin-
ing first-stage and reduced-form estimates implies an average labor supply elasticity
around 1%/2% ≈ 0.5.

8I discuss this issue in detail in Appendix B.5. The bias depends, among other things, on the
elasticity of substitution between materials and inventors.
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3.4 Second Stage Results

My estimation results, as reported in Table 1, reveal three novel findings. First, the
estimated inverse labor supply elasticity is positive and significant. A 10% increase in
employment requires 4.4% higher wages. For comparison, Seegmiller (2023) estimates
a slightly larger elasticity of 0.84 for high-skilled workers using LEHD data on wages
and employment. The estimated elasticity suggests that workers receive about 1/(1+
0.437) ≈ 70% of their marginal product in wages. Second, the heterogeneity analysis
across firm-size suggests that this effect is coming exclusively from firms with a large
inventor workforce. A firm with above median inventors faces an elasticity of about
0.75 implying that a 10% increase in employment requires 7.5% larger wages, while
there is no significant impact on smaller firms. These estimates suggest that inventors
working for large innovative firms receive 57% of their marginal product in wages,
while R&D workers at small innovative firms receive their entire marginal product.9

Third, column (3) reveals that firms with large R&D return also face less elastic
inventor supply, as predicted by the model. Quantitatively, the estimates are closely
aligned with the results for inventor employment. Remaining differences may be due
to the fact that R&D returns are a noisy measure of labor market power as they reflect
all frictions faced by the firm. In summary, the evidence suggests that smaller firms
face competitive labor markets for inventors, while larger firms have some monopsony
power.

I consider several robustness exercises. First, one concern might be that expand-
ing firms do not only hire more, but also better inventors. Observed wage growth may
then reflect a composition effect rather than an increase in quality-adjusted wages. I
investigate this concern by constructing proxies for inventor productivity and includ-
ing them as control variables in my regression.10 The associated regression results,
as reported in Appendix Table A.4, suggest that inventor quality is positively associ-
ated with inventor wages, however, this relationship does not quantitatively alter the
estimated inventor supply elasticities.

9These estimates do not imply that wage levels are larger for smaller R&D employers as marginal
products may differ substantially.

10I follow an AKM approach for annual R&D output for individual inventors and construct annual
firm-level measures of inventor quality by averaging over the inventor fixed effects for all employed
inventors.
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Table 1: Inverse R&D Labor Supply Elasticity Estimates

(1) (2) (3)
R&D Wage Growth

R&D Employment Growth 0.437*** -0.039 0.012
(0.150) (0.120) (0.158)

— × Above Median R&D Employment 0.746***
(0.201)

— × Above Median R&D Return 0.647***
(0.186)

First stage F stat. (Main) 67 39 31
First stage F stat. (Inter.) – 30 95
Observations 12,772 12,772 12,772

Note: R&D employment and wage growth are log differences between t − 2 and t + 3. R&D employment
growth is instrumented for with stock market returns in t − 1. All regressions control for NAICS3 × year
fixed effects. F statistics reported are based on Sanderson and Windmeijer (2015). Standard errors are
clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

Second, I control for pre-trends by adding lagged employment and wage growth
as in Seegmiller (2023), which does not significantly change estimated coefficients as
reported in Appendix Table A.2. Third, I explore robustness with respect to the
measure of inventors in Appendix Table A.1 and find essentially identical estimates
when alternatively using (1) a full-time equivalent measure of inventors, (2) only
US inventors, or (3) only verified inventors as identified by Kaltenberg et al. (2021).
Finally, I find quantitatively larger estimates when using TFP shocks instead of stock
market returns as instrument, however, the estimates are less precise due to a weaker
first stage. Nonetheless a similar pattern emerges, confirming that large firms or those
with high returns have monopsony power.

4 Quantification

The evidence presented in the previous section suggests a potentially meaningful role
for monopsony power in the market for inventors. This section quantifies its impact
on innovation and economic growth in an extension of the model introduced in Section
2 that is calibrated to match the evidence.
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4.1 Quantitative Model

There are at least three challenges in using the model presented in Section 2 together
with the evidence in Section 3 to investigate the economic impact of monopsony power
in R&D. First, my sample is restricted to listed firms, which tend to be larger. Conse-
quently, I might overstate the importance of monopsony power by using evidence on
large firms, which have more monopsony power according to the evidence presented
above, while ignoring the 40% of R&D expenditure accounted for by smaller firms.11

Second, the model ignores non-labor inputs in R&D, which account for 20% of R&D
expenditure in practice (see Appendix C.1). As I discuss below, introducing interme-
diate inputs dampens the impact of monopsony power as firms can substitute them
for R&D workers. Finally, the model abstracts from pay linked to firm performance
such as stock-based compensation, which may bias estimated firm-level labor supply
elasticities.12

To address these challenges, I extend the baseline model along three dimensions.
First, I introduce non-listed firms by allowing for two types of firms with different
baseline R&D productivities {Al, Anl}. I fix the mass of firms for each type exoge-
nously to match data from the NSF and denote the share of listed firms by ζ. As
shown below, non-listed firms tend to have much smaller R&D budgets and, thus,
R&D employment. As a result, adding these firms to the model introduces a mass of
firms with relatively low monopsony power, as long as ℓ̄ > 0, which reduces its overall
impact on economic growth.

Second, I introduce stock-based compensation to account for a potential direct
link between wages and firm performance. I assume that a fraction of the R&D wage
is paid in the form of a fixed number of stocks in the next period that is set to con-
stitute a constant share of expected wages. The number of shares is set one period
in advance such that workers at fortunate firms receive an unexpected pay increase.
Consequently, a fraction of the realized wage is directly linked to stock market re-
turns for the firm, which, as discussed above, constitutes a violation of the exclusion

11Total R&D expenditure in the Compustat sample in 2019 is 340 billion USD, while the NSF
reports a total expenditure on R&D for all firms of 564 billion USD, implying that listed firms
account for 60% of R&D expenditure. For 2000, this share is slightly higher at 72%.

12For example, Kline et al. (2019) estimate that a significant share of the value created from
patent grants is captured by high-skilled workers in small firms. Card et al. (2018) and Friedrich et
al. (2021) provide evidence of pass-through of firm shocks to worker wages.
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restriction for using stock market returns as an instrument for R&D productivity
shocks when estimating the inverse labor supply elasticity. 13 Introducing this chan-
nel directly in the model allows me to take this empirical challenge into account when
assessing the extent of monopsony power.

Finally, I augment the R&D production function to include intermediate inputs
Rkt via a standard CES aggregator:

Mkt+1 = Qt · Ak ·

(
α

1
θ
L · ℓ

θ−1
θ

kt + (1− αL)
1
θ ·
(
Rkt

Qt

) θ−1
θ

)γ· θ
θ−1

. (20)

The new production function nests the original one with αL = 1. The normalization
by Qt is necessary to allow for a balanced growth path. Intermediate inputs are
produced 1-for-1 from the final outputs such that the aggregate resource constraint
becomes:

Yt = Ct +

∫ 1

0

xkt · dk +
∫ 1

0

Rkt · dk. (21)

Introducing intermediates is important as I proxy for R&D wages using the ratio
of total R&D expenditure to R&D employment, which can be an imperfect measure if
R&D expenditure includes materials and machinery. I show in Appendix B.5 that the
changes in R&D per inventor become a potentially biased proxy for changes in R&D
wages in this setup, where the bias depends on the elasticity of substitution between
inputs as well as the markdown. Intuitively, firms increase their materials share
when they expand if markdowns increase in R&D employment, which makes R&D
expenditure more responsive relative to employment and, thus, R&D expenditure per
worker becomes more responsive than R&D wages. Hence, one might over-estimate
the degree of monopsony power in R&D when using R&D expenditure per worker
rather than R&D wages, however, this bias can be accounted for within the model.

13To give a numerical example, consider workers at a firm have an expected wage of 0.5 tomorrow
and expect the firm to have value 1.5. The stock-based compensation is set such that workers
expect to earn 15% of their salary through stock-based compensation. Then, workers will receive
15%·0.5

1.5 = 0.05 shares of the firm tomorrow. Suppose that wages are fixed, however, the firm’s value
could be 2 or 1 tomorrow. Then, if the value goes up, workers receive 2 · 0.05 + 0.85 · 0.5 = 0.525 in
compensation, while they receive 1 ·0.05+0.85 ·0.5 = 0.475 if the value goes down. This mechanism,
thus, yields a positive correlation between stock returns and compensation even though expected
wages are constant.
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4.2 Calibration

I parameterize the quantitative model using a combination of external and internal
calibration.14 For the external calibration, I pick a standard value for discount factor
β = 0.97, which together with a targeted growth-rate of 1.5% implies an annual risk-
free interest rate of 5%. I set the R&D scale elasticity to γ = 0.5 as in Acemoglu
et al. (2018) and calibrate the demand parameter α to achieve a markup (1/α) of
25%. Following Chetty et al. (2012), I set the aggregate labor supply elasticity to
ϵ = 0.5, such that an exogenous 1% rise wages would raise aggregate employment by
0.5%. Next, I set the elasticity of substitution between materials and labor in R&D
to θ = 0.5, which is in line with the estimates for the production sector in Oberfield
and Raval (2021).15 Finally, I set the share of listed firms to 5% based on the firms
in my sample compared to the NSF R&D surveys.16

For the internal calibration, I target a set of macro and micro moments. At the
aggregate level, I target an annual growth rate of 1.5% and a relative size of listed to
non-listed firms of 35, which is in line with the relative size of firms in my sample and
in the NSF aggregate statistics. These moments are particularly informative about
the average R&D productivity of listed and non-listed firms {Anl, Al}. I target a total
labor supply of 1/3, equivalent to 8 hours per day, whereof 14.6% work in R&D as in
Acemoglu et al. (2018), to pin down the labor disutility parameters {αP , αR}. Finally,
I target a labor share of 79% in R&D to pin down the relative importance of labor
in the R&D production function αL.17 Next, I target a set of micro-moments from
the data together with the evidence presented in the previous section. In particular,
I target the standard deviation of the R&D growth rate for listed firms together with

14See Appendix B.2 for a full description of the quantitative model together with the (recur-
sive) balanced growth path equilibrium. Additional details on calibration and simulation are also
presented there.

15Unfortunately, there is no good evidence on the degree of substitution between capital and labor
in the R&D process. Furthermore, it is not clear ex-ante whether that degree should be lower or
higher than in the production process. On the one hand, human capital is critical to the generation of
new ideas and, thus, R&D. On the other hand, some lab tasks might be highly prone to automation.

16My sample in 2000 has 1,068 firms, while the NSF reports 17,757 firms in total conducting R&D.
For 2019, my sample has 480 firms, while the NSF reports a total of 9,890 firms conducting R&D.
These figures imply a share of listed firms among R&D conducting firms of 4.9% and 6% for 2019
and 2000, respectively.

17I calculate this figure based on NSF data. See the calculations in Section 2 and Online Appendix
C.1.
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the auto-correlation of R&D to pin down the parameters of the demand process {σ, ρ}.
I calculate these moments in the model using simulation and focusing on listed firms
only. At last, I target the regression evidence in columns (1) and (2) of Table 1 to
inform the monopsony parameters {ξ, ℓ̄}.

Table 2 reports the calibrated parameters, and the targeted moments for the
internal calibration and their counterparts in the model. The model fits well with the
largest deviation coming from the wage elasticity for small firms, which the model
overestimates.

The model makes a range of predictions for the R&D returns under monopsony
power as discussed in Proposition 3. I confirm these in Table 3, which reports empiri-
cal estimates in Column (1) and coefficients based on simulated data in Column (2). I
investigate two predictions that were not exploited in the calibration and that can be
thought of as untargeted moments. First, the model predicts a positive correlation
between inventor employment and R&D returns as long as there is size-dependent
monopsony power. Indeed, I find a strong positive correlation in the data in Panel
A and a highly similar coefficient in the calibrated model.18 In the data, a 10% in-
crease in inventor employment is associated with a 2.5% higher R&D returns, while
the calibrate model predicts a 2.2% larger return. Second, the model predicts that
shocks inducing firms to hire more inventors should also be correlated with larger
R&D returns. Indeed, panels B and C confirm that stock market returns as well as
productivity growth is positively correlated with R&D returns in the data and the
model, with estimates of similar magnitude. Finally, note that the model cannot
account for these pattern if firms effectively act as price takers, i.e., in absence of
size-dependent monopsony power, as R&D returns are a constant in that case.

Finally, I confirm in Appendix B.6 that the calibration would overstate the de-
gree of monopsony power if I did not account for materials in R&D and stock-based
compensation.

18I also find in Appendix Table A.5 that the correlation between R&D returns and inventors is
robust to controlling for overall employment, which does not predict returns conditional on R&D
employment.
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Table 2: Parameters and Calibration Targets for Main Calibration

A. Parameters
Parameter Symbol Value Source

A.1. External calibration
Discount factor β 0.96 Standard value
Labor supply elasticity ϵ 0.50 Chetty et al. (2012)
R&D scale elasticity γ 0.50 Acemoglu et al. (2018)
Share of non-listed firms ζ 0.05 NSF BRDIS 2019
Markup parameter α 0.80 Terry (2023)
Elas. of substitution in R&D θ 0.50 Oberfield and Raval (2021)

A.2. Internal calibration
Labor disutility production αP 0.205 Direct
Labor disutility R&D αR 0.121 Direct
Labor weight in R&D αL 0.968 Direct
R&D productivity listed Al 0.261 Moment matching
R&D productivity unlisted Anl 0.014 Moment matching
Std. dev. R&D prod. shocks σ 0.238 Moment matching
Autocorr. R&D prod. shocks ρ 0.985 Moment matching
Avg. R&D supply elasticity ξ 1.922 Moment matching
Rel. R&D supply elasticity ℓ̄ 57.3 Moment matching

B. Moments
Moment Data Model Source

Growth rate 0.015 0.015 Data
Relative R&D listed vs non-listed 35 35 Data
Std. dev. of R&D growth-rate 0.316 0.316 Data
Autocorr. of R&D 0.922 0.923 Data
Wage elasticity 0.437 0.436 Data
Wage elas. for small R&D 0 0.201 Data
∆ wage elas. large R&D 0.746 0.747 Data
Labor share in R&D 0.79 0.79 Data
R&D employment 0.047 0.047 Acemoglu et al. (2018)
Production employment 0.286 0.286 Acemoglu et al. (2018)

Notes: This table reports calibrated parameter values and targeted moments in the data and model.
Panel A reports parameter values distinguishing between externally calibrated parameters in Panel
A.1 and internally calibrated parameters in Panel A.2. Panel B reports the targeted moments from
the data and the model values from the calibration. See text for additional details.
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Table 3: R&D Returns and Monopsony

(1) (2)
A. Inventors ln R&D Return
ln Inventors 0.253*** 0.221***

(0.031) (0.000)

B. Stock Market Return ln R&D Return
Lagged Excess Return 0.258*** 0.250***

(0.031) (0.004)

C. Productivity growth ln R&D Return
Lagged TFP Growth 0.220*** 0.111***

(0.044) (0.003)

Source Data Model
Monopsony — Yes
Observations 7,931 99,994

Note: This table reports OLS coefficient estimates. Column (1) reports
estimates from the sample. Columns (2) and (3) report estimates from
simulated data from the model. See text and Appendix A for details.
Standard errors are clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

4.3 Counterfactuals

Table 4 investigates the importance of monopsony power in the calibrated model.
The first column reports values for the baseline model, while columns 2–4 present
counterfactual economies. The “Full” counterfactual shuts down monopsony power
entirely through offsetting subsidies such that firms effectively act as price takers in
the R&D labor market. The “Fixed L̃R” scenario induces firms to act as price takers,
but holds constant total R&D employment L̃R =

∫ 1

0
ℓkt · dk through an untargeted

R&D tax. Thus, this scenario focuses exclusively on the impact of reallocating R&D
employment across firms. Finally, scenario ∆L̃R leaves monopsony power in place but
implements the aggregate R&D employment of the “Full” counterfactual through an
R&D subsidy. This scenario, thus, quantifies the impact of lower aggregate demand
for R&D workers compared to a no-monopsony world.19

19As discussed in Section 2, the competitive demand for R&D workers need not be socially optimal
due to the standard externalities involved in R&D.
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Table 4: Counterfactuals for Main Calibration

Outcome Baseline No Monopsony

Full Fixed L̃R ∆ L̃R

A. Aggregates
Growth rate 1.50% 1.70% 1.68% 1.51%
∆ Welfare 0.0% 10.6% 10.3% 0.3%
∆ R&D Employment 0.0% 1.9% 0.0% 1.9%
∆ Firm Value 0.0% 13.6% 13.4% 0.2%

B. R&D Employment Share
Top 10% 68.0% 81.2% 81.2% 68.0%
Top 5% 48.6% 64.6% 64.7% 48.6%
Top 2.5% 34.5% 49.5% 49.5% 34.4%

C. Wage Premium
Top 10% 21.4% 14.7% 14.7% 21.4%
Top 5% 45.4% 34.0% 33.9% 45.4%
Top 2.5% 76.6% 61.2% 61.1% 76.6%

Notes: This table reports counterfactuals for offsetting monopsony power through
targeted subsidies. The first and second columns report the calibration and counter-
factual without entry. The third column report the counterfactual holding constant
the number of employed researchers. The last column instead considers a counter-
factual with targeted subsidies, but where the aggregate employment of researchers
conforms with the no monopsony counterfactual. See text for additional details.

Table 4 reveals substantial economic costs of monopsony power. In its absence,
growth accelerates from 1.5% per annum to 1.7%—a 13% increase—yielding a 11%
welfare improvement in consumption equivalent terms. These effects are comparable
to other market distortions: Berger et al. (2022) estimate that monopsony power in
the production sector reduces output by 21% and welfare by 7.6%, while Aghion et al.
(2024) estimate that resolving static and dynamic misallocation from heterogeneous
product market power across firms would boost economic growth by 31% with a
welfare improvement of 9%. Similarly, de Ridder (2024) finds that changes in business
dynamism induced by rising fixed costs reduced economic growth by 23% and welfare
by 9%. Thus, labor market power in the R&D sector is sizable and about equally
harmful as monopsony in the production sector and misallocation due to markups.

Faster growth in the counterfactual stems from rising R&D employment and a
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more efficient R&D allocation. Column (3) shows that, holding constant aggregate
R&D hours, inducing the efficient allocation improves growth by 0.18 p.p. and welfare
by 10.3%. In turn, I find in column (4) that shifting only aggregate R&D employment
boosts growth by 0.01 p.p. and welfare by 0.3%. Thus, misallocation alone accounts
for about 0.18 p.p./0.20 p.p. = 90% of the cost of monopsony in R&D. As shown
in Panel B, the model without monopsony power features significantly more concen-
trated R&D employment. For example, the share of R&D expenditure accounted for
by the 2.5% largest firms rises from 35% to 50%. Intuitively, rising monopsony power
at the top held back their demand for R&D resources, such that the decentralized
equilibrium features more concentration. Nonetheless, wage premia at the top fall
slightly, as shown in Panel C, due to a general rise in R&D wages in the middle of
the R&D employment distribution.

5 Robustness and Discussion

Next, I discuss various robustness checks and investigate potential concerns with the
main analysis. I report the alternative calibrations and counterfactuals in Tables
B.2–B.4.

Perfect price discrimination. The model assumes that firms cannot price
discriminate among their workers, which is necessary to generate monopsony power.20

I relax this assumption in Appendix B.4.2 by introducing a flexible level of price
discrimination. While higher levels of price discrimination reduce the growth impact
of monopsony power, the effects remain large at intermediate levels. Re-estimating
the model assuming an intermediate level of price discrimination, I find that offsetting
the remaining monopsony power improves growth by 0.12 p.p. and welfare by 6.3%
(see column (6)). Thus, monopsony continues to be costly in terms of growth and
welfare even at intermediate levels of price discrimination.

Firm entry and entrepreneurship. Another important consideration is firm
20This assumption could be tested with inventor-level data by investigating whether expanding

firms change only the wages of marginal workers or also of inframarginal ones. Seegmiller (2023)
provides some evidence along those lines for “high-skilled” workers using the LEHD. Interestingly, he
finds that labor supply elasticities are larger for new recruits rather than incumbent workers, which
is the opposite of what a model with perfect price discrimination would predict if we are willing to
assume that new recruits can be thought of as marginal workers.
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entry and entrepreneurship. The exercise of monopsony power increases the value of
the firms and, thus, might incentivize entry. However, using subsidies to incentivize
firms to (implicitly) ignore their monopsony power increases their value even further
as reported in row four of Table 4. We might thus suspect that this leads to addi-
tional entry, which further boosts innovation. I propose a model extension with entry
in Appendix B.4.1 and calibrate it to match the baseline model under monopsony.
Column (7) in Table B.3 then investigates the implication of offsetting monopsony
power through subsidies under free entry. I find that monopsony is even more costly
in this scenario. Inducing firms to be price takers through subsidies increases the
number of active firms by 22% and improves growth by 0.48 p.p. and welfare by 20%.

Financing subsidies. The counterfactual implicitly assumes that R&D subsi-
dies are financed in a manner that does not influence firms’ incentives to innovate,
e.g., through lumpsum taxation of households. Alternatively, one may consider a
sophisticated R&D tax scheme that induces an efficient allocation across firms while
breaking even. I investigate this option in Panel B of Table B.3 and find that it would
reduce growth slightly and improve welfare by less than the baseline. Intuitively, the
tax scheme requires a large subsidy for firms conducting a lot of R&D, which requires
heavy taxes on average to break even. These taxes are so large that average R&D
employment falls by about 20% in the main calibration resulting in a reduction of
growth by 0.01 p.p.. On net, the scheme boosts welfare by 6.7% as lower labor disu-
tility outweighs the minor growth deceleration. Interestingly, such a scheme remains
growth improving under free entry. This occurs as free entry yields a reduction in
the number of R&D workers per firm and, thus, less monopsony power even at the
top. Consequently, less tax revenue is needed and, thus, fewer disincentives created
on average.

Calibration robustness. I conduct a range of additional robustness exercises
around the model calibration. In the first set of exercises, I re-calibrate the model un-
der alternative assumptions about exogenous parameters and the mechanics of bonus
payments. First, I consider a specification where R&D employment and materials are
substitutes by recalibrating the model with θ = 1.5. Second, I consider two alterna-
tive incentive pay schemes. In the first scheme, I assume that the stock compensation
distributed depends on the current rather than expected future wage. In the second
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scheme, I instead assume that workers are simply paid a bonus whenever the firm
achieves positive stock market returns. Finally, I also consider the simple case with-
out material inputs and stock compensation. For these models, I find that offsetting
monopsony power improves growth by 14–19 p.p. and welfare by 7–12%.

In the second set of robustness exercises, I explore the model’s estimated impact
of monopsony power for alternative calibrations in which I vary parameters around
their estimated values. As reported in Table B.4, increasing the dispersion of R&D
productivity—either by raising the variance σ2 or autocorrelation ρ of R&D produc-
tivity shocks or by decreasing the relative productivity of unlisted firmsAnl/Al—raises
the welfare benefits of tackling monopsony power. These benefits are not driven by
a larger growth impact, however, but by a smaller increase in R&D employment at
constant growth impact, i.e., larger gains in aggregate R&D productivity. Raising the
average R&D supply elasticity ξ raises the cost of monopsony by raising its impact on
growth and R&D employment. A larger relative R&D supply elasticity ℓ̄ is similarly
connected to higher welfare costs of monopsony power, however, the effects are driven
by a smaller expansion of R&D employment that compensates a slightly lower growth
impact in welfare terms. Finally, raising the labor intensity of R&D predictably, as
it raises the welfare costs of monopsony and its growth impact. Jointly, these robust-
ness checks confirm that the counterfactuals are sensitive to the parameterization,
however, they are robust around the calibration matching the targeted moments.

Sources of monopsony power. Monopsony power is often associated with a
lack of outside options for workers. I provide evidence in favor of this idea in Table
A.5 by developing two measures of limited outside options and documenting their
relationship to a proxy for monopsony power, R&D returns. First, I develop a measure
of firm dominance in its specific inventor labor market, which I define using technology
classifications of patents and calculate as the share of inventors employed by the firm
among those patenting in the relevant technology classes. Column (5) confirms that
this measure is significantly associated with R&D return, in line with a size-dependent
monopsony interpretation. Second, a lack of outside options can be the product
of specialization on the part of inventors such that firms hiring more specialized
inventors tend to have larger R&D returns. I measure inventor specialization through
technology classes. For each inventor, I measure how similar the patents are that they
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worked on as measured by the distance of their technology classes. I aggregate to
the firm level by taking an average over all employed inventors. Column (6) confirms
that firms hiring more specialized inventors indeed have larger R&D returns—in line
with the idea that they have more market power.

6 Conclusion

Politicians, commentators, and academics alike have raised concerns about the macroe-
conomic implications of limited competition in U.S. labor markets. This paper sug-
gests that these concerns are warranted when it comes to the market for inventors,
who possess highly specialized skills and, thus, potentially limited outside options.
The implications are particularly severe as inventors drive productivity growth, and
static inefficiencies from monopsony power are compounded by innovation’s cumula-
tive nature.

I reach this conclusion in three steps. First, I present a heterogeneous firms en-
dogenous growth model with monopsony power in the inventor market. The model
identifies two key channels: monopsony power reduces aggregate inventor employ-
ment through wage depression when supply is not perfectly inelastic, and stronger
monopsony power among larger firms creates misallocation by shifting inventors to-
ward less productive employers. Second, using an instrumental variable strategy to
estimate firm-level inventor labor supply elasticities, I find substantial monopsony
power among large firms. While small firms face competitive conditions, larger em-
ployers lose only 13% of R&D employment for a 10% wage reduction, paying inventors
only two-thirds of their marginal product. Third, I calibrate a quantitative extension
of the model to these elasticities, finding that eliminating monopsony power would
increase economic growth by 13% and welfare by 11%.

These results suggest at least two avenues for future research. First, monopsony
power in the corporate sector might affect inventors’ entrepreneurial activity, particu-
larly relevant given big tech firms’ extensive startup acquisitions. Second, monopsony
power might influence human capital investment by depressing returns and creating
differential exposure across skills, affecting both the distribution of inventors across
firms, but also of human capital across skills.
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Appendix

A Empirical Appendix

A.1 Variable Construction

R&D Employment. I calcualte R&D employment based on inventors listed on
firms’ granted patents. I link patents to firms in Compustat using the crosswalk in
Kogan et al. (2017) and assign each firm a share of a given inventor in each year based
on the share of patents assigned to the firm. I then record total inventor in the year
prior to the patent application to reflect the time at which they worked on a given
application. Finally, I aggregate to the firm level. In my baseline, I use the inventors
identified by USPTO’s Patentsview and confirm robustness with those identified by
Kaltenberg et al. (2021).

Labor Market Dominance. I construct a measure of labor market dominance
in the market for inventors to investigate the potential connection between dominance
and R&D returns. For each new patent in a firm’s portfolio I calculate the share of
potential inventors that are working with the firm, where I classify someone as a
potential inventor if they work on patents with the identical technology classification.
I then average this measure out over all of the firm’s patent to get a measure of overall
inventor market dominance.

Inventor Specialization. I contruct a firm-level proxy for it by aggregating
an inventor-level measure of specialization. For an individual inventor, I construct
a specialization measure based on the cosine distance between the technology clas-
sifications of patents that the inventor worked on over the period. I then average
this measure to the firm-level by taking a patent-weighted average over inventors
associated with the firm.

R&D Returns. I construct R&D returns as the ratio of patent valuations es-
timated in Kogan et al. (2017) to R&D expenditure over a 5-year window. I focus
on observations with at least 50 underlying patents. See Lehr (2024) for a further
discussion of the meassure.

Stock-market returns. I construct annual stock market returns from monthly
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returns reported in CRSP. I then construct excess returns using the S&P500 index
returns from the same data source. When constructing returns, I line up the month
with the fiscal year of the company.

A.2 Robustness for Elasticity Estimates

Figure A.1 reports estimates for the average inverse labor supply elasticity (Panel A)
as well as the interaction regression (Panel B and C) for different time horizons. The
average estimates are decreasing over time starting at about 0.75 and stabilitizing
around 0.25 in the long-run. The evidence from the interaction regression highlights
that the overall decline in the estimate is driven by below median R&D employment
firms, while the estimate for the gap between above and below median R&D employ-
ment firms is relatively stable. The estimate for below median R&D employment
firm is only significant in t = 1 and close to zero in subsequent periods. This finding
motivates the focus on the t = 3 estimate in the main text.

Additional robustness exercises are reported in Tables A.2 - A.4. Table A.2 adds
prior growth rates for R&D employment and wage as controls as in Seegmiller (2023).
Table A.1 uses alternative measures of inventor employment. Table A.3 uses TFP
growth in t− 1 constructed from the TFP estimates in Imrohoroglu and Tuzel (2014)
as an alternative instrument for R&D employment growth. Finally, A.4 add inventor
productivity—measured by the average patents per year of employed inventors—as a
control variable. Across robustness exercises I find estimates highly consistent with
the main estimates.
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Figure A.1: Elasticity Estimates Over Time
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Table A.1: Inverse R&D Labor Supply Elasticity Estimates — Inventor Robustness

(1) (2) (3) (4)
A. Baseline R&D Wage Growth
R&D Employment Growth 0.437*** 0.480*** 0.436*** 0.523***

(0.150) (0.157) (0.150) (0.175)

First stage F stat. (Main) 67 69 62 53
First stage F stat. (Inter.) – – – –
Observations 12,772 12,710 12,772 12,563

B. Interaction with Size R&D Wage Growth
R&D Employment Growth -0.039 -0.059 -0.046 -0.087

(0.120) (0.122) (0.121) (0.132)
— × Above Median R&D Employment 0.746*** 0.774*** 0.749*** 0.771***

(0.201) (0.199) (0.201) (0.201)

First stage F stat. (Main) 39 42 37 35
First stage F stat. (Inter.) 30 33 29 31
Observations 12,772 12,710 12,772 12,563

B. Interaction with Return R&D Wage Growth
R&D Employment Growth 0.012 0.026 -0.000 -0.007

(0.158) (0.167) (0.159) (0.194)
— × Above Median R&D Return 0.647*** 0.688*** 0.652*** 0.740***

(0.186) (0.198) (0.188) (0.228)

Inventor measure Baseline US only FTE Verified
First stage F stat. (Main) 31 32 29 25
First stage F stat. (Inter.) 95 94 93 72
Observations 12,772 12,710 12,772 12,563

Note: R&D employment and wage growth are log differences between t − 2 and t + 3. R&D employment growth is instrumented
for with stock market returns in t − 1. All regressions control for NAICS3 × year fixed effects. F statistics reported are based on
Sanderson and Windmeijer (2015). Standard errors are clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table A.2: Inverse R&D Labor Supply Elasticity Estimates — Controls

(1) (2) (3)
R&D Wage Growth

R&D Employment Growth 0.434*** -0.040 -0.023
(0.162) (0.125) (0.147)

— × Above Median R&D Employment 0.711***
(0.186)

— × Above Median R&D Return 0.676***
(0.161)

Controls ✓ ✓ ✓
First stage F stat. (Main) 72 43 38
First stage F stat. (Inter.) – 31 76
Observations 12,707 12,707 12,707

Note: R&D employment and wage growth are log differences between t − 2 and t + 3. Controls include
lagged inventor wage and employment growth. R&D employment growth is instrumented for with stock
market returns in t − 1. All regressions control for NAICS3 × year fixed effects. F statistics reported are
based on Sanderson and Windmeijer (2015). Standard errors are clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

Table A.3: Inverse R&D Labor Supply Elasticity Estimates — Alternative Instru-
ment

(1) (2) (3)
R&D Wage Growth

R&D Employment Growth 0.571* 0.023 0.225
(0.337) (0.218) (0.351)

— × Above Median R&D Employment 0.953***
(0.323)

— × Above Median R&D Return 0.628***
(0.202)

Controls
First stage F stat. (Main) 16 9 8
First stage F stat. (Inter.) – 11 31
Observations 10,239 10,239 10,239

Note: R&D employment and wage growth are log differences between t−2 and t+3. R&D employment growth is
instrumented for with TFP growth. All regressions control for NAICS3 × year fixed effects. F statistics reported
are based on Sanderson and Windmeijer (2015). Standard errors are clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table A.4: Inverse R&D Labor Supply Elasticity Estimates — Productivity

(1) (2) (3)
R&D Wage Growth

R&D Employment Growth 0.447*** -0.037 0.010
(0.145) (0.126) (0.160)

— × Above Median R&D Employment 0.756***
(0.206)

— × Above Median R&D Return 0.658***
(0.197)

Inventor Productivity Growth 0.505*** 0.375*** 0.445***
(0.100) (0.076) (0.091)

First stage F stat. (Main) 70 41 33
First stage F stat. (Inter.) – 30 100
Observations 12,518 12,518 12,518

Note: R&D employment and wage growth are log differences between t− 2 and t+3. Inventor productivity
is the average patents per year produced from inventors employed by the firm. R&D employment growth is
instrumented for with stock market returns in t− 1. All regressions control for NAICS3 × year fixed effects.
F statistics reported are based on Sanderson and Windmeijer (2015). Standard errors are clustered at the
NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table A.5: R&D Returns Correlate with R&D Employment

(1) (2) (3) (4) (5) (6)
R&D Returns

R&D Employment 0.295*** 0.276***
(0.036) (0.054)

Employment 0.019
(0.031)

Lagged Excess Returns 0.215***
(0.023)

Lagged TFP Growth 0.219***
(0.055)

Firm R&D Dominance 0.161***
(0.039)

Inventor Specialization 0.178**
(0.079)

Within R-sq. 0.13 0.13 0.01 0.00 0.02 0.00
Observations 11,062 11,050 9,296 7,587 9,897 11,048

Note: All variables in logs exce[t for excess returns and TFP growth. All regressions control for NAICS3 × year fixed
effects. Standard errors are clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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B Online Model Appendix

B.1 Baseline Model

B.1.1 Characterization of Decentralized BGP Equilibrium

In the following, I characterize the decentralized equilibrium and subsequently high-
light the implications for a Balanced Growth Path.

Household. Household optimization yields the familiar Euler equation:(
Ct+1

Ct

)σ (
v(LP,t, LR,t)

v(LP,t+1, LR,t+1)

)1−σ

= β ·Rt+1. (B.1)

Along a BGP this gives rise to the standard relationship between (consumption)
growth, interest rate, and discount factor: (1 + g)σ = β ·R.

The supply of production and research labor satisfies
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As discussed above, ϵ governs the labor supply elasticity at the aggregate level, while
ξ and ℓ̄ govern the firm-specific labor supply elasticities in the R&D sector. In par-
ticular, we have

∂ lnLP,t
∂ lnWP,t

=
∂ lnLR,t
∂ lnWR,t

= ϵ and ∂ ln ℓkt
∂ lnWR,kt

=
1

ξ
· ℓ̄+ (ℓkt/LR,t)

ξ

(ℓkt/LR,t)
ξ

≡ ϵkt,

where WR,t =
∫ 1

0
ℓkt ·WR,kt · dk is the average wage in the R&D sector. Note that

ϵkt = ξ if ℓ̄ = 0, which is the CES case, and ϵkt → ∞ if ξ → 0, which recovers the

46



case where R&D workers are perfectly mobile across firms and wages are equalized
within the R&D sector.

Production. The first order conditions of the final production firms gives rise to
demand curves for production workers and intermediate goods

WP,t

Ct
=
Yt
Ct

· 1− α

LP,t
and pjt = α ·

(
LP,t · zjt
xjt

)1−α

.

Using this demand curve we can solve the associated firms’ profit maximization
problem. The equilibrium monopoly price pM is constant across firms and given by
pM = ψ

α
. All prices are relative to the final good whose price is normalized to 1.

Equilibrium quantities xkt and profits are

xkt = zkt · LP,t ·
(
ψ

α2

)− 1
1−α

and πkt = π̃t · zkt,

where π̃t = (1− α) · α
1

1−α ·
(
ψ
α

)− α
1−α · LP,t is a common profit shifter.

Resultingly, output and consumption, i.e. output minus production costs, are
given by

Yt = Qt · LP,t · α
α

1−α ·
(
α

ψ

) α
1−α

and Ct = Yt −
∫ Qt

0

ψ · xkt · dk = (1− α2) · Yt.

Clearing the production labor market, we have

LP,t = α
1

1+ϵ

P · (1 + α)−
ϵ

1+ϵ .

Innovation. Taking into account the characterization developed above, we can re-
state the firm’s innovation problem as

Vt(zkt, Qkt) = max
ℓkt

{
Qkt · π̃t −Wkt · ℓkt +R−1

t+1 · Et [Vt+1(zkt+1, Qkt+1)|zkt]
}

s.t. Qkt+1 =Mkt+1 · zkt+1 +Qkt, Mkt+1 = Qt · Ak · ℓγkt and WR,kt = WR,t(ℓkt).
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Along a Balanced Growth Path with π̃t = π̃ and Rt+1 = R one can verify that

Vt(zkt, Qkt)

Qt

= ṽ(zkt) + V · qkt,

where I denote values normalized by Qt in lower case, the value of quality-adjusted
intermediates is V = R/(R− 1) · π̃ and the value of innovation capability ṽ(zkt) is the
solution to

ṽ(zkt) =max
ℓkt

{
1

R
· V ·mkt+1 · E[zkt+1|zkt]− ℓkt · wR,kt +

1 + g

R
· Et[ṽ(zkt+1)|zkt]

}
s.t. mkt+1 = Ak · ℓγkt and wR,kt = WR(ℓkt).

It is well known that there is a unique solution to this value function iteration
problem. Furthermore, note that the choice of ℓkt is independent of the firm value
such that the associated first order conditions are given by

ℓkt =

(
γ · Ak · V · Et[zkt+1|zkt]
Wkt · (1 + 1/ϵkt) ·R

) 1
1−γ

.

Derivations for the firm’s value function maximization problem. The base-
line problem is given by

Vt(zkt, Qkt) = max
ℓkt

{
Qkt · π̃t −Wkt · ℓkt +R−1

t+1 · Et [Vt+1(zkt+1, Qkt+1)|zkt]
}

s.t. Qkt+1 =Mkt+1 · zkt+1 +Qkt, Mkt+1 = Qt · Ak · ℓγkt and WR,kt = WR,t(ℓkt).

One can guess and verify that the firm’s value function in equilibrium takes the
form

Vt(zkt, Qkt) = VZ,t(zkt) + VQ,t ·Qkt, where VQ,t = π̃t +
∑
s=1

(∏
k=1,s

R−1
t+k

)
π̃t+s

and VZ,t(zkt) = max
ℓkt

{
−WR,kt · ℓkt +R−1

t+1 · Et [Mkt+1zkt+1 · VQ,t+1 + VZ,t+1(zkt+1)|zkt]
}

s.t. WR,kt = Wt(ℓkt) and Mkt+1 = Qt · Ak · ℓγkt

Note that the choice of R&D input is independent of the evolution of VZ,t(zkt)
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and, thus, we can solve for optimal private R&D input as

ℓkt =

(
γ ·Qt · Ak · VQ,t+1

WR,kt · (1 + 1/ϵR,kt) ·Rt+1

) 1
1−γ

.

This demand function together with labor supply can be used to clear the labor
market for R&D workers.

B.1.2 Characterization of the Planner Equilibrium

Static optimality conditions. Planner output and consumption:

Ỹt = Qt · LP,t ·
(
ψ

α

)− α
1−α

and Ct = (1− α)Yt

Planner production labor supply:

LP,t = α
1

1+ϵ

P

Derivations for the social planners innovation problem. Imposing the static
equilibrium conditions derived above, we can restate the planner problem for R&D
workers as

max Et
∞∑
t=0

βt · (Ct · v(LP , LR,t))
1−σ − 1

1− σ

with v(LP , LR,t) = exp
(
− ϵ

1 + ϵ

(
1 + αR

(
LR,t
αR

) 1+ϵ
ϵ

))
,

LR,t =

(
ℓ+

1

1 + ξ

)−1

·

(∫ 1

0

ℓkt ·

(
ℓ+

1

1 + ξ

(
ℓkt
LR,t

)ξ)
dk

)
,

Ct = Qt · LP · (1− α) ·
(
ψ

α

)− α
1−α

and Qt+1 = Qt

(∫ 1

0

Ak · ℓγkt · zkt+1 · dk + 1

)
subject to the law of motion for firm-level R&D productivities. I denote the growth-
rate of aggregate technology as gt+1 =

∫ 1

0
Ak · ℓγkt · zkt+1 · dk.
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The first-order condition for R&D labor is given by

γ·Qt·Ak·ℓγ−1
kt ·Et[zkt+1|zkt]·

λQt+1

Ct · λCt
=

(
LR,t
αR

) 1
ϵ

· ℓ̄+ (ℓk,t/LR,t)
ξ

ℓ̄+ (1 + ξ)−1 + ξ
1+ξ

·
∫ 1

0
(ℓkt/LR,t)1+ξ · dk

,

where the RHS is the shadow price of hiring an R&D worker, which coincides in
formula with the decentralized equilibrium.

We can solve for the marginal value of Qt as

λQt = λCt · Ct+1

Qt+1

(
1 +

∑
s=1,··· ,∞

( ∏
k=1,...,s

(1 + gCt+k)

)
·
λCt+s
λCt

)

Define the shadow interest rate as R̃t+1 = λCt+1/λ
C
t and we can simplify further

Qt · ṼQ,t+1 ≡
λQt+1 ·Qt

Ct · λCt
=

1

R̃t+1

(
1 +

∑
s=1,··· ,∞

( ∏
k=1,...,s

1 + gt+1+k

R̃t+1+k

))

Defining the shadow wage appropriately we can solve for the first order conditions
as

ℓkt =

(
γ ·Qt · Ak · Et[zkt+1|zkt] · ṼQ,t+1 · Ct

W̃R,kt

) 1
1−γ

B.1.3 Proofs and Additional Results

Proof of Proposition 1. Following the results developed above, the labor supply curve
is given by

Wkt = Ct ·
(
LR,t
αR

) 1
ϵ

·

(
ℓ+

1

1 + ξ
+

ξ

1 + ξ
·
∫ 1

0

(
ℓkt
LR,t

)1+ξ

dk

)−1

·

(
ℓ+

(
ℓkt
LR,t

)ξ)

It follows directly, that any shift in R&D employment due to a change in the
R&D subsidy rate (or any other shift in the demand for, but not supply of, R&D
workers) yields the shift in R&D wages described in the proposition. The remaining
observations result directly from the formula.

Proof of Proposition 2. The result follows directly from the derivations for the de-
centralized and planner equilibria above. First, one can confirm that with ℓ̄ = 0, the
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first order conditions are perfectly proportional, i.e., the relative allocation coincides.
That also implies that the allocation of R&D workers is efficient if their supply is
perfectly inelastic. Second, imposing R&D subsidies that depend on the firm type
and perfectly offset the wage elasticity yield the efficient relative and total allocation.
As is standard, output subsidies can be used to solve inefficiencies in the production
sector. Finally, it is straight-forward to confirm that monopsony power reduces the
relative demand for R&D workers among larger firms as long as ℓ̄ > 0.

Proposition 1 highlights that monopsony power materializes in form of a finite la-
bor supply elasticity in response to firm-specific demand shocks. Proposition 4 further
emphasizes the necessity of using firm-level shocks for identification. In particular,
the equilibrium response of wages to aggregate shocks, such as an economy-wide R&D
subsidy, is independent of firms’ market power and depends only on the aggregate
labor supply elasticity for R&D workers. Thus, it is impossible to estimate the extent
of monopsony power in this model when considering aggregate shocks. Direct esti-
mates of the labor supply elasticity can only be recovered with firm-specific inventor
demand shocks.

Proposition 4. The elasticity of firms’ inventor wages with respect to their employ-
ment as induced by a small change in the general R&D subsidy rate 1 − τt is given
by

∂ lnWR,kt

∂ ln ℓkt

∣∣∣∣∣
∆τt

=
1

ϵ
, (B.2)

which is constant across firms regardless of their monopsony power. Furthermore,
under such a policy change, the relative allocation of R&D workers ℓkt/LR,t remains
constant.

Proof of Proposition 4. It is straight-forward to show that starting with an equilib-
rium, the first order conditions for the firm continue to hold with a constant ℓkt/LR

when LR rises with (1 − τ) such that
(
L

1
ϵ
R · (1− τ)

) 1
1−γ · L−1

R remains constant. Re-
sultingly, the wage elasticity induced by such a shock is 1/ϵ.

Proof of Proposition 3. The first statement can be derived directly from the firm’s
first order conditions. The second statement follows from the fact that the average
product is the R&D return times the R&D wage.
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B.2 Quantitative Model

This Appendix introduces the full quantitative model and derives the key Balanced
Growth Path equations.

B.2.1 Setup

There are two types of firms: listed and non-listed. The firms operate identically, but
differ in their average productivity as described above.

Final Production. A representative firm hires production labor LP,t at wage WP,t

and buys intermediate inputs {xjt}j∈[0,Qt] at price pjt to produce output Yt. The firm
solves

max
LP,t,{xjt}j∈Qt

Yt −WP,t · LP,t −
∫
Qt

pjt · xjtdj s.t. Yt = L1−α
P,t

∫
Qt

z1−αjt · xαjtdj, (B.3)

where zjt is a demand-shifter. Production worker and intermediate good demand
is given by

WP,t

Ct
=
Yt
Ct

· 1− α

LP,t
and pjt = α ·

(
LP,t · zjt
xjt

)1−α

. (B.4)

Intermediate good producers. There is a unit mass of firms owning the exclusive
production rights to Intermediate goods, which can be produced with constant unit
cost ψ in terms of the final good. For each intermediate good, the proprietor solves

max
xjt

pjt · xjt − ψ · xjt (B.5)

subject to the product demand curve detailed above. Profit maximizing monopoly
price pM is constant across firms and given by pM = ψ

α
. All prices are relative to the

final good whose price is normalized to 1. I set ψ = α when taking the model to the
data.

Equilibrium quantities xkt are given by

xkt = zkt · LP,t ·
(
ψ

α2

)− 1
1−α

(B.6)
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Equilibrium profits are given by

πkt = π̃t · zkt with π̃t = (1− α) · α
1

1−α ·
(
ψ

α

)− α
1−α

· LP,t. (B.7)

I denote the mass of available intermediate goods by Qt and their average quality
level as zt = 1

Qt

∫ 1

0

∫
Qkt

zkt ·dz ·dk, where Qkt is the mass of intermediate goods owned
by firm k. I will denote values normalized by Qt in lower case.

The final output can be used for three purposes: consumption, production of
intermediate goods and material in innovation, Rkt. Market clearing thus requires

Yt = Ct +

∫
Qt

ψ · xjt · dj +
∫ 1

0

Rkt · dk. (B.8)

In a decentralized equilibrium, output net of production cost for intermediate
goods is

Yt − It = Qt · zt · LP,t · (1− α2) · α
α

1−α ·
(
α

ψ

) α
1−α

. (B.9)

Workers and Labor Markets. A representative household owns all firms and
supply labor in form of production workers LP,t and researchers {ℓkt}k∈[0,1]. Wage
income from production workers, WP,t, and researchers, WR,kt, bond holdings Rt ·Bt,
and firm ownership Πt are either consumed Ct or invested in a riskless bond Bt+1.
Flow utility depends on labor supply and consumption, and the future is discounted
at rate β. The household solves

max
∞∑
t=0

βt

(
logCt −

ϵ

1 + ϵ

(
αP

(
LP,t
αP

) 1+ϵ
ϵ

+ αR

(
LR,t
αR

) 1+ϵ
ϵ

))

s.t. LR,t =

(
ℓ+

1

1 + ξ

)−1

·

(∫ 1

0

ℓkt ·

(
ℓ+

1

1 + ξ

(
ℓkt
LR,t

)ξ)
dk

)

Bt+1 + Ct = Rt · Bt +WP,t · LP,t +
∫ 1

0

WR,kt · ℓktdk +Πt

(B.10)

Household optimization yields standard Euler equation:

Ct+1

Ct
= β ·Rt+1. (B.11)
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Supply of production labor satisfies

WP,t

Ct
=

(
LP,t
αP

) 1
ϵ

. (B.12)

Supply for research labor satisfies

WR,kt

Ct
=

(
LR,t
αR

) 1
ϵ

·

(
ℓ+

1

1 + ξ
+

ξ

1 + ξ
·
∫ 1

0

(
ℓkt
LR,t

)1+ξ

dk

)−1

·

(
ℓ+

(
ℓkt
LR,t

)ξ)
(B.13)

Innovation. Intermediate goods firms employ R&D resouces to produce new blueprints
in the subsequent period, which are added to their existing stock. A fraction ζ of
firms is “listed” with potentially different levels of R&D productivity across listed
and non-listed firms. Otherwise, both firm types behave identically.

Firms hire R&D workers ℓkt and use materials Rkt to produce Mkt+1 new products
in the next period according to production function

Mkt+1 = Qt · Ak ·

(
α

1
ν
L (ℓkt)

ν−1
ν + (1− αL)

1
ν

(
Rkt

Qt

) ν−1
ν

) ν
ν−1

·γ

. (B.14)

Listed and non-listed firms differ exclusively in their level of Ak. Wages are determined
in the labor market as detailed above. Materials are produced 1-for-1 from the final
output and priced at cost.

The quality-adjusted stock of blueprints Qkt evolves according to

Qkt+1 =Mkt+1 · zkt+1 +QN
kt. (B.15)

The demand-shifter zkt+1 is determined at the point of invention and is identical
to all products that were invented by the same firm in the same period.21 It follows
a persistent, stochastic process:

ln zkt+1 = (1− ρ) · µ+ ρ · ln zkt + σ · νkt+1 with νkt+1
i.i.d.∼ N(0, 1). (B.16)

21Alternatively, one could assume that firm-level demand for all products fluctuates concurrently.
Such an assumption will affect the precise algebra of the model, but not its qualitative or quantitative
properties.
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The firms’ optimization problem is thus given by

Vkt(zkt,Qkt) = max
ℓkt

{
Qkt · π̃t −WR,kt · ℓkt −Rkt +

1

Rt+1

· Et [Vkt+1(zkt+1,Qkt+1)|zkt]
}

s.t. Mkt+1 = Qt · Ak ·

(
α

1
ν
L (ℓkt)

ν−1
ν + (1− αL)

1
ν

(
Rkt

Qt

) ν−1
ν

) ν
ν−1

·γ

,

WR,kt = Wt(ℓkt), and Qkt+1 =Mkt+1 · zkt+1 +Qkt.

Lemma 1. The firm’s value function can be decomposed as Vkt(zkt,Qkt) = Vt(zkt, Ak)+

V Q
t · Qkt, where the V Q

t is the solution to

V Q
t = π̃t +

1

Rt+1

· V Q
t+1 with π̃t ≡ (1− α) · α

1
1−α ·

(
ψ

α

)− α
1−α

· LP,t (B.17)

and Vkt(zkt) is the solution to

Vt(zkt, Ak) = max
ℓkt,Rkt

{
−Wkt · ℓkt −Rkt

+
1

Rt+1

Et
[
Mkt+1 · zkt+1 · V Q

t+1 + Vt+1(zkt+1, Ak)
∣∣zkt]}. (B.18)

The firm’s innovation choice problem is thus given by

max
ℓkt,Rkt

R−1
t+1 · Et[zkt+1|zkt] ·Mkt+1 · V Q

t+1 −WR,kt · ℓkt −Rkt s.t. (B.13) and (B.14).

The aggregate state of technology evolves according to

Qt+1 = Qt +

∫ 1

0

Mkt+1 · zkt+1 · dk. (B.19)

B.2.2 Simulation and Quantification

I calibrate the model through moment matching as discussed in the main text. For
a given set of parameters I first solve the model along the balance growth path and
then simulate a listed firms for 100,000 periods.I construct all moments exactly as in
the data and run the same regressions. To account for potential biases due to share-
based compensation, I follow the third example in Appendix Section B.3 to construct
a set of wages adjusting for stock-based compensation. Using these wages, I then
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calculate R&D expenditure per worker as I do in the data. I present calibrations
and counterfactuals for alternative models of stock-based compensation in Online
Appendix B.8. I then calculate a weighted distance of target and model moments,
which I minimize using standard solvers.

Using the calibrated model, I construct counterfactuals in which monoposony
power is overcome through targeted subsidies. In my baseline, I consider the case
where subsidies are financed through lumpsum taxation. Naturally, such a scheme
will not only yield a more efficient allocation of researchers across firms, but will also
improve the aggregate incentives for R&D and, thus, yield an expansion of aggregate
R&D employment. To disentangle the relative and absolute effects, I consider two
additional counterfactuals. In the first, I fix the number of researchers employed
L̃R =

∫ 1

0
ℓkt · dk through a general taxation of research activity. In the second, I

instead do not implement any size-dependent R&D policy and only implement the
change in L̃R between the baseline monopsony and no monopsony cases through a
general subsidy of research activity.

B.3 Stock-based Compensation

R&D workers are often compensated through stocks. In 2019, the NSF reported that
around 12% of total labor costs in R&D came through stock-based compensation. In
the following, I highlight how this compensation structure can lead to a bias when
estimating labor supply elasticities using stock market returns rkt as an instrument
using three examples. The examples highlight that alternative mechanisms for stock-
based compensation lead to no, upwards, or downwards bias when estimating the
(inverse) labor supply elasticity. Thus, the presence of stock-based compensation
alone does not necessarily imply biased estimation.

I consider the following setup: Total compensation Wkt is given by

Wkt = WC,kt + skt · Vkt, (B.20)

where WC,kt is the cash component of wages, skt denotes shares and Vkt the value of
a share. I assume that the cash component is fully flexible and reflects any potential
monopsony power, while considering alternative specifications for the stock-based
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compensation. Log changes in compensation can be approximated as

∆ lnWkt ≈ sC,kt ·∆ lnWC,kt + (1− sC,kt) · (∆ ln skt +∆ lnVkt) .

Throughout, I am interested in estimating the elasticity of R&D wages with re-
spect to R&D employment using stock market returns, rkt = ∆ lnVkt, as an instru-
ment. The IV-estimator β̂IV and unbiased estimate β are given by

β̂IV =
Ĉov(rkt,∆ lnWkt)

Ĉov(rkt,∆ ln ℓkt)
and β =

Cov(rkt,∆ lnWC,kt)

Cov(rkt,∆ ln ℓkt)
,

where I assume instrument relevance, i.e. Cov(rkt,∆ ln ℓkt) > 0. Finally, firm’s stock
returns are assumed i.i.d. with an expected value of 0 and only total compensation
is observed.

Example 1: Fixed share of compensation. Suppose workers receive a fixed
share s of their compensation in stocks, while the remainder, WC,kt is paid out in
cash. Total compensation is thus Wkt = WC,kt + s ·Wkt. Simple algebra reveals then
that Wkt = (1− s)−1 ·WC,kt such that overall compensation moves 1-for-1 with cash
compensation. Resultingly, log changes in cash and overall compensation coincide,
i.e. ∆ lnWkt = ∆ lnWC,kt, and the IV estimator is unbiased.

Example 2: Fixed number of shares. Suppose the number of shares skt is
determined one period in advance such that the expected share of compensation
through stocks is s:

s =
skt · Et−1[Vkt]

skt · Et−1[Vkt] + Et−1[WC,kt]
.

Since stock returns are i.i.d, they are orthogonal to the predetermined changes in
share ∆ ln skt. Resultingly, we have

Cov(rkt,∆ lnWkt) = sC · Cov(rkt,∆ lnWC,kt) + (1− sC) · V ar(rkt)

Hence, even if the cash wage is independent of the stock returns, we will see a positive
covariance of overall wage growth to stock returns. In other words, as long as cash
wages respond less than 1-for-1 with stock returns, using the latter as an instrument
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will lead to a downwards bias of the estimated labor supply elasticity and an upwards
bias of β:

β̂IV = sC · β + (1− sC) ·
V ar(rkt)

Cov(rkt,∆ ln ℓkt)
.

Example 3: Fixed value. Suppose workers are promised a fixed compensation in
terms of stock values, e.g. 20k USD in form of the firm’s shares, such that

s =
Et−1[skt · Vkt]

Et−1[skt · Vkt] + Et−1[WC,kt]
. (B.21)

Since ∆ ln skt+∆ lnVkt is predetermined, it is independent of the stock return. Then,
we have that the estimated IV coefficient is given by

β̂IV = sC · β,

which is smaller than the true coefficient. Thus, using stock market returns leads to
a downwards biased estimated for β and an upwards biased labor supply elasticity in
this case.

B.4 Extensions

B.4.1 The Cost of Monopsony under Free Entry

This Appendix discusses the quantitative implication of monopsony model when the
number of firms is determined by a free entry condition. I briefly discuss how I intro-
duce free entry into the model and how I construct counterfactuals before presenting
the associated estimates for the cost of monopsony power.

Model. I introduce entry by allowing for the posibility that the mass of firms, which
I denote by Mt, is determined by a free entry condition stating that the expected
value of a firm without existing patents has to be equal to entry costs, which I model
as Qt · ϕE · MφE

t . Resultingly, the free entry condition is given by

E[Vit/Qt] = ϕE · MφE
t .
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Larger values of φE make Mt less responsive—indeed φE → ∞ yields the case of a
fixed mass of firms in the limit. To preserve comparability with the model, which
assumes a fixed mass of firms Mt = 1, I assume that entry costs are paid in the
past rather than affecting resource constraints moving forward. Note also that the
equilibrium number of firms is constant along the BGP.

I parametrize ϕE to ensure that Mt = 1 in baseline. I then consider two counter-
factuals. In the first counterfactual, I assume that the planner implements a targeted
subsidy scheme that perfectly offsets firms’ disincentive to hiring due to monopsony
power. As discussed below, this intervention entails a substantial subsidy on average,
which raises firm values and, thus, the incentives to enter. I, thus, consider a second
counterfactual in which I implement a non-targeted tax on R&D expenditure that
fully finances the subsidy scheme. In both scenarios I set φE = 0 to explore the
full “free-entry” case without crowding out, which could be understood as the other
extreme compared the the φE → ∞ that implicitly underpins the baseline.

Counterfactuals. Column (7) of Table B.3 reports the aggregate results for the
counterfactuals with the baseline counterfactual reported in column (2) for reference.
Free entry increases the welfare costs of monopsony power significantly. This effect is
driven by an expansion of the active firms and R&D employment in both cases. Both
are less pronouced in the scenario with budget neutral taxation and subsidies. The
welfare gains from combating monopsony power increase by about factor 5 in the first
scenario and turn decidedly positive in the second one. The intuition for the latter is
that entry pushes down the average number of R&D workers per firm, which lowers
wage elasticities, especially for larger firms that require high subsidies. Resultingly,
the required general tax on R&D to recover the subsidy payments are lower, which
reduces their drag on total R&D employment.

B.4.2 Monopsony and Price Discrimination

The inability of firms to have discriminatory wages among its employees is crucial to
generating monopsony power. This section considers the case of wage discrimination
and highlights the challenges of disentangling it from monopsony power empirically.
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Background. We can write the labor disutility for R&D workers equivalently as

LR,t =

(
ℓ̄+

1

1 + ξ

)−1

·
∫ 1

0

(∫ ℓkt

0

(
ℓ̄+

(
ℓ

LR,t

)ξ)
· dℓ

)
· dk,

which highlights that the marginal disutility differs among the employees of a given
firm. Tracing-out the integral we see that the 0th workers has a disutility proportional
to ℓ̄, while the ℓkt-th worker has a disutility proportional to ℓ̄+ (ℓkt/LR,t)

ξ. If a firm
can impose perfectly discriminatory wage, then it will pay a lower wage to the former
than to the latter. Resultingly, the wage for the ℓth worker at any company needs to
satisfy

WR,t(ℓ)

Ct
=

(
LR,t
αR

) 1
ϵ

·

(
ℓ̄+

1

1 + ξ
+

ξ

1 + ξ
·
∫ 1

0

(
ℓkt
LR,t

)1+ξ

dk

)−1

·

(
ℓ̄+

(
ℓ

LR,t

)ξ)
.

Total labor cost for the firm, Ckt, is then just the intregral over all employees, and
marginal cost is the wage of the last employee:

Ckt =

∫ ℓkt

0

WR,t(ℓ) · dℓ ∝ ℓkt

(
ℓ̄+

1

1 + ξ
·
(
ℓkt
LR,t

)ξ)
with ∂Ckt

∂ℓkt
∝ ℓ̄+

(
ℓkt
LR,t

)ξ
.

Resultingly, firms’ marginal costs are the true marginal costs of hiring the last worker
and planner and decentralized equilibrium agree on the relative marginal cost of R&D
workers across firms. Thus, there is no misallocation of R&D workers across firms
nor insufficient demand due to firms’ gaming of the labor market.

A natural question is then whether we can distinguish between both models em-
pirically. Unfortunately, this task is difficult as average wages behave quite similarly
in both models. In particular, one can verify that the elasticity of the average wage
with respect to employment, Wkt = Ckt/ℓkt, remains positive:

∂ lnWkt

∂ ln ℓkt
= ξ ·

1
1+ξ

·
(

ℓkt
LR,t

)ξ
ℓ̄+ 1

1+ξ
·
(

ℓkt
LR,t

)ξ .
This phenomenon occurs as rising wages at the margin also push up the average wage,
even though inframarginal wages are unaffected.
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Model. In practice, firms’ power to discriminate is likely limited due to informa-
tion asymmetries and/or fairness considerations. I, thus, consider a model in which
workers are paid a fraction αD of the fully discriminatory wage and a fraction 1−αD

of the required marginal wage given total hiring. Total labor cost are then satisfy

C(ℓkt) ∝ ℓkt ·

(
ℓ̄+

1 + (1− αD) · ξ
1 + ξ

·
(
ℓkt
LR,t

)ξ)
(B.22)

Resultingly, marginal cost become proportional to

∂Ckt
∂ℓkt

∝

1 + (1− αD) · ξ ·

(
ℓkt
LR,t

)ξ
ℓ̄+

(
ℓkt
LR,t

)ξ
(ℓ̄+ ( ℓkt

LR,t

)ξ)

Evidently, marginal costs are proportional to marginal disutility for αD = 1 and to
marginal average disutility for αD = 0.22

Increasing Wage Discrimination. Figure B.2 explores the impact of price dis-
crimination quantitatively in the main calibration. For reference, I also report values
for the baseline monopsony case and the case of no monopsony implemented through
subsidies. As shown in Panels A and B, Growth and welfare converge to the no
monopsony case as the model approaches full price discrimination. however, the gap
remains large at intermediate values.

Calibration and Counterfactuals for αD = 0.5. Panels C and D in Figure B.2
highlight that the estimated wage elasticities fall significantly as we assume higher
levels of price discrimination. To account for this fact, I re-calibrate the model via
moment matching assuming as intermediate level of price discrimination, αD = 0.5,
and report the associated parameters in column (6) of Table B.2. The counterfactuals,
presented in column (6) of Table B.3, suggest that monopsony power continues to be

22The elasticity of the average wage with respect to labor is

∂ lnC(ℓkt)/ℓkt
∂ ln ℓkt

= ξ ·
1+(1−αD)·ξ

1+ξ ·
(

ℓkt

LR,t

)ξ
ℓ̄+ 1+(1−αD)·ξ

1+ξ ·
(

ℓkt

LR,t

)ξ .
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Figure B.2: Price Discrimination and the Cost of Monopsony
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C. Average Wage Elasticity

0 20 40 60 80 100

Wage Discrimination ,D(%)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

D
i,
.
W
ag
e
E
la
st
ic
it
y

D. Di,erential Wage Elasticity

Notes: The figure shows the impact of increasing firms’ ability to price discriminate among workers.
All models employ the main calibration and then impose alternative values for αD. The dotted
red and blue lines show the outcomes under the calibrated model and the counterfactual with no
monopsony power respectively.

a significant drag on economic growth and welfare.

B.5 Regression bias due to materials

The relative demand for R&D inputs is given by

rkt
ℓkt

=

(
1− αL
αL

)
· ((1 + ϵkt) · wkt)σ (B.23)

Defining the effective price of R&D input as PR,t = (αL · ((1 + ϵit) · wit)1−σ + (1− αL))
1

1−σ ,
firms’ first order conditions are given by

ℓkt = αL ·
(
wit · (1 + ϵit)

PR,t

)−σ

︸ ︷︷ ︸
relative demand effect

·
(
γ · Ak · E[zkt+1|zkt]

PR,t

) 1
1−γ

︸ ︷︷ ︸
total demand effect

(B.24)
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Denoting R&D expenditure per work by w̃kt = (wkt · lkt + rkt)/ℓkt, one can show
that

∂ ln w̃kt
∂ ln ℓkt

=
∂ lnwkt
∂ ln ℓkt

+
rkt

lkt · wkt + rkt
·
∂ ln

(
(1 + ϵkt)

σ · wσ−1
kt

)
∂ ln ℓkt︸ ︷︷ ︸

=bias

(B.25)

Thus, any estimate of the wage elasticities using R&D per worker is necessarily
biased. However, the direction and extent is ex-ante unclear and depends on the
elasticity of substitution between materials and workers. Note also the first term
of the bias is the expenditure share of materials such that the bias will be small in
absolute value of the materials share in cost is small as well.

B.6 Bias in Calibration

This section highlights the importance of accounting for stock-based compensation
and intermediate inputs. Table B.1 reports the regression coefficients when estimating
columns (1) and (2) in Table 1 in the data and the model under alternative specifica-
tions. The first row reports the data, while the second row reports a calibration that
does not include stock-based compensation nor intermediate inputs. The calibration
provides a reasonable fit. The next rows add in stock-based compensation and inter-
mediate inputs using the main calibration. The resulting regression coefficients imply
much larger labor supply elasticities and, thus, suggest that the calibrated model
overestimates the degree of monopsony power. The final row re-calibrates the model
to the main specification, providing a similarly good fit, however, taking into account
stock-based compensation as well as intermediate inputs. The exercise thus suggests
that the main regression evidence cannot directly speak to the importance of these
biases, however, we can take them into account in the model.
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Table B.1: Wage Regression in Data and Model

Model Reg. (1) Regression (2)
Main Base Inter.

Data 0.437 0.000 0.746

Baseline 0.437 0.197 0.746
+ Stock-based compensation 0.438 0.198 0.750
+ Intermediate inputs 0.425 0.197 0.720
+ Both 0.426 0.198 0.723

Adjusted 0.436 0.201 0.747

Notes: This table reports coefficient estimates for the main specifications from
the data and simulated model data. Column (1) reports estimates for specifi-
cation (18). Columns (2) and (3) report coefficient estimates from specification
(19). The baseline model has neither stock-based compensation nor material
inputs in R&D. Rows 3 and 4 add these to the simple calibration, respectively,
without recalibrating other parameters, while row 5 adds both simultaneously.
The final row re-calibrates the model with both extensions.

B.7 Regression Bias with Supply Shocks

A classic problem when estimating labor supply elasticities are labor supply shocks
(Manning, 2003). Consider an extension of my framework with labor supply shocks
in the form of labor disutility shifters αit and for simplicity assume ℓ̄ = 0. Labor
supply is given by

LRt =

∫ 1

0

α−1
kt · ℓit ·

(
ℓkt · α−1

kt

LR

)ξ
· dk

First order conditions for labor supply confirm that larger values of αkt imply
lower disutility of working for the specific firm:

Wkt

Ct
= (1 + ξ) ·

(
LRt
αR

) 1
ϵ

α−1
kt

(
ℓkt · α−1

kt

LRt

)ξ
Focusing on the case with only in R&D, labor demand for the firm satisfies

γ · θkt · ℓγ−1
kt = (1 + ξ) ·Wkt.
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As a result, equilibrium quantities and wages satisfy

ℓkt ∝ θ
1

ξ+1−γ

kt · α
1+ξ

ξ+1−γ

kt and Wkt ∝ θ
ξ

ξ+1−γ

kt · α
(1+ξ)(1−γ)

ξ+1−γ

kt

It follows that estimating the labor supply elasticity with OLS under a combina-
tion of demand and supply shocks would yield an estimate with a downwards bias
that is increasing in the relative prominence of supply (αkt) shocks:

∆ lnWkt

∆ ln ℓkt
= ξ · ∆ ln θkt

∆ ln θkt + (1 + ξ) ·∆ lnαkt
− (1− γ) · (1 + ξ) ·∆ lnαkt

∆ ln θkt + (1 + ξ) ·∆ lnαkt
.

Whether such a bias would also affect differential estimates is ex-ante unclear.
The formula above suggests that the bias is uniform across firms if the nature of
monopsony power is also uniform.

B.8 Calibration and Counterfactuals for Alternative Models
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Table B.2: Alternative Calibrations

A. Parameters (1) (2) (3) (4) (5) (6)

Parameter Symbol Simple Main θ =
1.5

Bonus
II

Bonus
IV

αD =
0.5

A.1. External calibration
Discount factor β 0.96 0.96 0.96 0.96 0.96 0.96
Labor supply elasticity ϵ 0.50 0.50 0.50 0.50 0.50 0.50
R&D scale elasticity γ 0.50 0.50 0.50 0.50 0.50 0.50
Share of non-listed firms ζ 0.05 0.05 0.05 0.05 0.05 0.05
Markup parameter α 0.80 0.80 0.80 0.80 0.80 0.80
Elas. of substitution in R&D θ 0.50 0.50 1.50 0.50 0.50 0.50

A.2. Internal calibration
Labor disutility production αP 0.205 0.205 0.205 0.205 0.205 0.205
Labor disutility R&D αR 0.097 0.121 0.089 0.118 0.281 0.123
Labor weight in R&D αL 1.000 0.968 0.594 0.968 0.969 0.968
R&D productivity listed Al 0.262 0.261 0.331 0.263 0.220 0.263
R&D productivity unlisted Anl 0.013 0.014 0.024 0.014 0.013 0.014
Std. dev. R&D prod. shocks σ 0.266 0.238 0.226 0.241 0.218 0.241
Autocorr. R&D prod. shocks ρ 0.979 0.985 0.979 0.984 0.994 0.984
Avg. R&D supply elasticity ξ 2.008 1.922 1.908 1.963 1.366 1.963
Rel. R&D supply elasticity ℓ̄ 106.7 57.3 153.8 68.3 2.6 38.0

B. Moments (1) (2) (3) (4) (5) (6)

Moment Data Simple Main θ =
1.5

Bonus
II

Bonus
IV

αD =
0.5

Growth rate 0.015 0.015 0.015 0.015 0.015 0.015 0.015
Relative R&D listed vs non-listed 35 35 35 35 35 35 35
Std. dev. of R&D growth-rate 0.316 0.316 0.316 0.316 0.316 0.316 0.316
Autocorr. of R&D 0.922 0.968 0.923 0.904 0.922 1.092 0.924
Wage elasticity 0.437 0.437 0.436 0.437 0.437 0.434 0.435
Wage elas. for small R&D 0 0.197 0.201 0.184 0.205 0.198 0.202
∆ wage elas. large R&D 0.746 0.746 0.747 0.746 0.746 0.746 0.746
Labor share in R&D 0.79 1 0.79 0.79 0.79 0.79 0.79
R&D employment 0.047 0.047 0.047 0.047 0.047 0.047 0.047
Production employment 0.286 0.286 0.286 0.286 0.286 0.286 0.286

Notes: This table reports calibrated parameter values and targeted moments in the data and model for alternative
model specifications. Panel A reports parameter values distinguishing between externally calibrated parameters
in Panel A.1 and internally calibrated parameters in Panel A.2. Panel B reports the targeted moments from the
data and the model values from the calibration. In the simple model, R&D is produced only with labor and there
is no stock-based compensation. In Bonus II, stock-based compensation is determined based on expected wages in
the next period rather than current wages. In Bonus IV, workers receive a bonus whenever the firm earns positive
stock returns. The final column reports results for a model with partial price discrimination among workers. See
text for additional details. 66



Table B.3: Counterfactuals for Alternative Calibrations

Outcome (1) (2) (3) (4) (5) (6) (7)
Simple Main θ = 1.5 Bonus II Bonus IV αD = 0.5 Entry

A. Lump-sum Taxation
∆ Growth Rate 0.21 p.p. 0.20 p.p. 0.14 p.p. 0.20 p.p. 0.19 p.p. 0.12 p.p. 0.48 p.p.
∆ Welfare 10.5% 10.6% 7.1% 10.4% 12.3% 6.3% 19.8%
∆ R&D Employment 1.7% 1.9% 2.7% 2.0% 7.0% 0.4% 8.4%
∆ Firm Value 15.6% 13.6% 14.3% 13.8% 9.0% 10.2% -0.0%
Avg. R&D Subsidy 48.8% 44.0% 35.3% 44.0% 44.9% 45.3% 43.2%
∆ Firms 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 21.8%

B. Budget-neutral R&D Taxation and Subsidies
∆ Growth Rate 0.00 p.p. -0.01 p.p. -0.04 p.p. -0.01 p.p. -0.03 p.p. -0.09 p.p. 0.20 p.p.
∆ Welfare 6.0% 6.7% 2.7% 6.6% 8.8% 2.7% 13.5%
∆ R&D Employment -21.1% -20.4% -13.2% -20.3% -17.7% -22.4% -15.5%
∆ Firm Value 8.9% 10.4% 11.9% 10.6% 5.6% 6.7% -0.0%
Avg. R&D Subsidy 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% -0.0%
∆ Firms 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 18.1%

Notes: This table reports counterfactuals for offsetting monopsony power through targeted subsidies. Each column reports
the change in key outcomes for a different calibration. In the simple model, R&D is produced only with labor and there is
no stock-based compensation. In θ = 1.5, I assume that labor and material are substitutes instead of complements in R&D.
In Bonus II, stock-based compensation is determined based on expected wages in the next period rather than current wages.
In Bonus IV, workers receive a bonus whenever the firm earns positive stock returns. The sixth column reports results for a
model with partial price discrimination among workers. The last column reports counterfactuals for a model with free entry.
See text and appendix for additional details.
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Table B.4: Key Moments for Alternative Parameterizations

Scenario Wage
elasticity

Wage elas.
for large

firms
∆ Growth ∆ R&D

Empl. ∆ Welfare

Baseline calibration 0.436 0.747 0.20 p.p. 1.9% 10.6%
Lower variance of R&D shocks σ 0.633 0.623 0.20 p.p. 3.0% 7.7%
Higher variance of R&D shocks σ 0.313 0.736 0.20 p.p. 1.5% 13.2%
Lower persistence of R&D shocks ρ 0.533 0.684 0.20 p.p. 2.4% 9.0%
Higher persistence of R&D shocks ρ 0.306 0.784 0.20 p.p. 1.5% 13.0%
Lower relative productivity of unlisted firms Anl/Al 0.491 0.768 0.21 p.p. 1.8% 11.1%
Higher relative productivity of unlisted firms Anl/Al 0.390 0.720 0.18 p.p. 2.4% 10.3%
Lower avg. R&D supply elasticity ξ 0.235 0.429 0.14 p.p. 1.9% 9.9%
Higher avg. R&D supply elasticity ξ 0.685 1.031 0.24 p.p. 3.8% 11.4%
Lower rel. R&D supply elasticity ℓ̄ 0.541 0.782 0.21 p.p. 2.3% 10.6%
Higher rel. R&D supply elasticity ℓ̄ 0.366 0.703 0.19 p.p. 1.8% 10.7%
Lower R&D supply disutility αR 0.436 0.747 0.20 p.p. 1.9% 10.6%
Higher R&D supply disutility αR 0.436 0.747 0.20 p.p. 1.9% 10.6%
Lower labor intensity in R&D αL 0.430 0.737 0.20 p.p. 2.0% 10.5%
Higher labor intensity in R&D αL 0.442 0.757 0.20 p.p. 1.8% 10.7%

Notes: This table reports selected moments and statistics for alternative parameterizations as a sensitivity check. Each row reports alternative
values for calibrations changing the indicated parameter by +/- 25% of its value in the main calibration, except for the autocorrelation, where
parameterizations +/- 0.005 of the main calibration are reported, and labor intensity of R&D, where parameterizations +/- 0.01 of the main
calibration are reported. See text and appendix for additional details.
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C Online Empirical Appendix

C.1 Calculating the Labor Share in R&D

I calculate the labor share in R&D for the US in 2000 and 2019 using the “All
industries” data reported in the 2000 Survey of Industrial Research and Development
(SIRD), which was conducted by the Division of Science Resources Statistics within
the National Science Foundation (NSF), and the 2019 Business Enterprise Research
and Development Survey (BERDS), which was conducted by the National Center for
Science and Engineering Statistics (NCSES) and Census Bureau. In both cases, I first
calculate the attributable R&D costs, which excludes undefined costs and includes
imputed opportunity cost for capital, and then report the share of labor costs. For
the 2000 figures I make a range of adjustment to capture costs that are reported in
detail in 2019, but lumped into an "Other" category in 2000. These adjustments are
based on the 2019 values reported for these categories and detailed in the footnotes
of Table C.1.

As reported in Table C.1, the labor share of attributable R&D costs was 79% in
2019 and 70% in 2000 yielding an average of 74.5%. The remainder of the costs is
split between “materials and equipment” and capital, where the former tends to be
more important. Notably, the labor share in R&D costs is significantly higher than
the labor share in the US overall, which is typically reported around 67% (Autor et
al., 2020). Hence, R&D is a very labor intensive task, justifying the focus on labor
markets in R&D.
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Table C.1: National Labor Share in R&D

2000 2019

A. Raw R&D costs [% thereof]

Raw R&D cost 199.5 493.0
R&D wages and benefits 84.2 [42.2%] 268.0 [54.4%]
Stock-based compensation 12.3 [6.1%]∗ 39.0 [7.9%]
Temporary staffing 6.7 [3.4%]∗ 21.4 [4.3%]
Materials and supplies 28.1 [14.1%] 34.4 [7.0%]
Royalties and licensing fees 3.7 [1.9%]∗ 9.2 [1.9%]
Expensed equipment 2.9 [1.5%]∗ 7.2 [1.5%]
Lease and rental payments 3.3 [1.7%]∗ 8.2 [1.7%]
Depreciation 4.0 [2.0%] 18.9 [3.8%]
Other 54.2 [27.2%]∗ 86.6 [17.6%]

B. Attributable R&D cost

Raw R&D costs 199.5 493.0
– Other - 54.2 - 86.6
+ Imputed cost of capital 2.0 9.4
Attributable R&D costs 147.3 415.8

C. Attributable costs shares [% thereof]

Materials and equipment 34.8 [23.6%] 50.9 [12.2%]
Capital 9.3 [6.3%] 36.5 [8.8%]
Labor 103.2 [70.1%] 328.4 [79.0%]

Notes: Values in Panel A are taken from the source noted in the text except those
market with ∗, which are imputed. Labor related values are imputed to keep con-
stant their relative size to R&D wages and benefits. Other values are imputed to
keep constant their relative size to overall R&D. Finally, the “Other” category is ad-
justed such that the individual items add up to raw R&D cost. Panel B calculates
attributable R&D costs as raw R&D cost minus other cost plus cost of capital. The
latter are imputed as 50% of depreciation, which is in line with an interest rate of
7.5% and depreciation rate of 15%. The final panel categorizes R&D costs into mate-
rials and equipment, capital, and labor. Materials and equipment includes materials
and supplies, royalties and licensing fees, and expensed equipment. Capital includes
depreciation, lease and rental payments, and imputed cost of capital. Labor includes
R&D wages and benefits, stock-based compensation, and temporary staffing.70
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